
Computer Architecture
Prof. Madhu Mutyam

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module – 06
Lecture – 23

Superscalar Organization

So, this week we are going to discuss dynamic scheduling and superscalar organisation,

which consist of various micro architectural components that help in achieving dynamic

scheduling. And in this module, we are mainly concentrating on superscalar organization, and

discuss various components in superscalar processor.

(Refer Slide Time: 00:36)

So, we know that the Inorder execution will degrade the performance, the reason is if the

leading instruction installed, even though the trailing instructions are independent, we cannot

issue these trailing instruction to the function units and as a result the overall performance

will be degraded. So, in other words the Inorder instructions issue and executions will

degrade the performance and we need to look at some other alternatives to improve the

overall performance.

So, when we move from scalar pipeline design to superscalar pipeline design, we can issue

multiple instructions, we can fetch multiple instructions, we can decode multiple instructions

and we also have a support for multiple execution units, in a superscalar pipeline design.

Once we have the superscalar processor, in order to expose the instruction level

parallelization, we can take the help of either the compiler or the hardware. And we already

discussed various compiler optimization techniques to expose instruction level

parallelization.

Now, in this week we are going to discuss the hardware techniques that will expose

instruction level parallelization to the underlying processor that is superscalar processor, so

that the performance can be improved. So, in order to overcome the performance penalty

associated with the in order execution, we are now going to the out of order execution and to

execute instructions in an out of order fashion, so we need the support from the superscalar

processor and as a part of this dynamic scheduling we are going to discuss various techniques

associated with out of order execution of instructions.

So, we already discussed in the previous modules that the instruction dependences will limit

the execution of instructions in an out of order fashion. So, instruction dependences consist of

data dependences and name dependences. And the data dependences are the dependences

where actually true dependence will be there, because the true data flow will happen between

producer and the consumer. But were as in the case of name dependences, when instructions

have name dependences there is no flow of information between producer and consumer and

this also called as the false dependence. So, in order to eliminate the false dependence, we

have to use techniques such as register renaming.

So, as part of this dynamic scheduling mechanisms we consider techniques to eliminate this

false dependencies by using register renaming. Once we eliminate name dependences or false

dependencies so as a result we can schedule instructions in an out of order fashion. So, we

already discussed in compiler optimisations that the instructions at compile time can be

rearranged in such a way that if the rearrangement of instructions are not going to create any

data flow or any exception behaviours then we are fine with the rearrangement and then

execute these instructions in an out of order fashion.

So, as long as we take care of data flow and exception behaviour, we can rearrange the

instructions at run time after identifying the instructions are independent and then schedule

these instructions on to the functional units, so that we can parallelize our execution or we

can overlap execution of multiple instructions and improve the overall performance.

So, the main advantages with the dynamic scheduling compared to static scheduling are the

dynamic scheduling allows the code compiled for one microarchitecture to run efficiently on

another micro architecture. We know that for a same ISA we can have multiple

microarchitectures. So, for example AMD processor and INTEL processors can use same

ISA, x86 ISA, but the way the processor designed in AMD can be completely different from

the way the processor designed by INTEL.

A single ISA can be realised through multiple implementations and each implementation is

corresponding to one microarchitecture. So that, we can have multiple microarchitectures

which have the same underlying ISA. So, when I say multiple microarchitectures for the

same ISA, one processor may consider five stage pipeline, the other processor may consider

ten stage pipe line. And one processor may consider single ported register file, the other

processor may consider multi ported register file. One processor may consider a single issue,

the other processor may consider multiple issue. So we can have several variations in our

microarchitecture, but the underlying ISA can be same.

As long as ISA is same the code which is written based on that particular ISA can be executed

on any of the microarchitectures or the any of the processors. And once we have the dynamic

scheduling support in our system, so as a result we can efficiently execute code which is

based on the same ISA on various micro architectures. The second advantage with the

dynamic scheduling is, so it handles the dependencies that may not be known at compile

time.

And the third advantage with the dynamic scheduling is the processor can tolerate

unpredictable delays. So, in order to understand the dynamic scheduling part, let us focus on

the superscalar processor organization in this module. So, once we have the thorough

understanding of superscalar processor organisation then we can apply the dynamic

scheduling mechanisms to expose significant instruction level parallelization that is present in

our program, so that we can improve the overall performance of system. So we start with

superscalar processor organization.

(Refer Slide Time: 07:15)

So, this consists of several pipeline stages, starting with the fetch stage. So in the fetch stage

we fetch multiple instructions from the instruction cache. And all these fetch instructions will

be stored in instruction decode buffer, this is a buffer which is placed between instruction

fetch, and instruction decode. And once we fetched the instruction stored in the intermediate

buffer or the pipeline buffer, we take these instructions and give it to the decoder, and decoder

decodes all these instructions simultaneously. So effectively, we have support for multiple

instructions decoding in the decode stage. After the decoding is done we dispatch these

instructions through a dispatch stage. And the main idea of the dispatch stage is instructions

will be dispatched to the functional units.

In some processors they combine the dispatched buffers and the reservation station together

and whereas in some designs they separate dispatch buffers and the reservation stations. So,

again there are advantages and disadvantages with each of these designs, but in this particular

organization what we are considering is after dispatching these instructions will be moved to

different reservations stations and we have one reservation station for each of the functional

unit. So, we know that after the decoding the instruction, the type of instruction what we are

going to execute. And based on the type of the instruction, we dispatch this decoded

instruction to the respective reservation station.

And in this particular design we are considering separate reservation stations for each of the

functional units, but there are designs where they consider a single reservation station for all

the functional units. We are going to discuss that in the next foil. So, once instructions are

stored in the reservation station, if the operands are ready and if the functional unit is free

then we can schedule one instruction at a time from the reservation station to the

corresponding functional unit.

And here again, selecting one instruction from a set of instruction that are stored in the

reservation station, we can apply a various heuristic mechanisms. We can consider an out of

order the selection of instructions from this reservation station. So that is a reason why if you

see in this a superscalar processor organisation, the fetch stage, decode stage and the dispatch

stage are actually working in the inorder fashion. But whereas the selection of instruction

from the reservation station to be issued to the functional units, happen in the out of order

fashion and the execution of these instructions happen in out of order fashion on the

functional units.

And finally, depending on the type of instruction, depending on the number of cycles

instructions are going to take for executing, these executed instructions will be written to the

buffer that is called a reorder buffer, in out of order fashion. So, effectively so starting from

the reservation station output to the reorder buffer input, we have out of order flow in our

instruction execution. And once we have instructions executed by different functional units

and written to the reorder buffer, we select instructions from these reorder buffer and will

complete these instructions in the program order again.

And some instructions, when we have memory instructions typically store instructions then

we need one more stage after the completion stage, that is called as a retire stage. So, the

complete stage is the stage where all ALU operations and the load operations will be

completed, will complete their execution. But whereas the store instructions after completion

stage, the store values will be written to store buffer and actual write operations to the

memory happens only in the retire stage.

We already know that for a store operation, if you are going to wait till the time when the

store operation is writing to the memory, it is going to take significant amount of time. And if

you are waiting for so long time then it is going to degrade the performance. So as a result in

order to minimize the penalty associated with store operations we typically consider store

buffer where after the completion stage of the store instructions, we write to the store buffer

and so that the store operations is said to be completed from the processor point of view but

the actual operation, actual write operation, happens only in the next stage that is the

retirement stage. But for all other operations which are ALU operations or load operations

because we are not going to the write to the memory so we can complete the execution of

these operations at the end of complete stage.

So, when we say ALU operation or load operation is completed, we are actually writing to the

architectural registers of the processor and writing to the architectural register happens at the

end of complete stage. So, each of these pipeline stages in the superscalar processor has a

specific role to play, the fetch stage is going to fetch the instructions, the decode stage is

going to decode the instructions, dispatch stage is going to dispatch the instructions to various

functional units or associated reservations stations and reservation stations keep all the

instructions which are waiting to be executed by the functional units or waiting for the

operands to the available.

And the execute stage actually performs the actual execution of the instructions on different

functional units, the complete stage is going to complete the processing of the instruction

from the machine architecture point of view. And the retirement stage is the stage where we

actually write the store values from the store buffer to the memory. So, out of all these stages

the fetch decode and dispatch, we follow the program order and for the complete, completion

stage or the retirement stage, we follow the Inorder or programme order again but for execute

stage we will go by the out of order fashion.

So, because we can exploit the instruction level parallelization at the execute stage that is

mainly because our processor may have multiple functional units and there may be

independent instructions in the program. And as long as independent instructions are there

and the functional unit is available, we can schedule these independent instructions in an out

of order fashion and we can execute them on the functional units so that the execution of

different instructions can be overlapped.

In other words we can exploit the parallelization of independent instructions, executions

using this various execution units and that will improve the overall performance. And we

need Inorder completion and Inorder retirement. This is required mainly to maintain the

correctness of the programme. So, when we are going for the Inorder commits so as a result

what happens is even if leading instruction is creating an exception, we are not committing

any of the trailing instructions. So, we save the processor, we save the process state and we

re-execute the instructions starting from that excepting instruction. So, having discussed this

superscalar processor organization, now we are going to look at some of these stages

thoroughly and we start with the dispatch stage.

(Refer Slide Time: 16:19)

So, the main role of the dispatch stage is, it has to route decoded instructions to the

appropriate functional units. Because after the decoding, we have the decoded instructions

and we also know the type of instructions what we are going to execute. So, the dispatch

stage is going to dispatch these instructions to appropriate functional units. Either you can

directly issue to functional unit or we may consider a design where it will be issued to the

reservation station and from the reservation station, we can issue to the functional unit.

So, when we consider a system where, if you are dispatching the instructions directly to the

functional unit, then dispatch and issue both will be same, but in some designs they consider

separate stage in between the dispatch stage and functional unit execution. So that is called as

a reservation station, there dispatch means dispatching to the reservation station and issue

means, selecting an instruction from the reservation station and giving it to the functional

unit.

(Refer Slide Time: 17:32)

The main role of the reservation station is to decouple the instruction decoding and the

instruction execution. So, once we decouple the instruction decoding and the instruction

execution, so we can eliminate the stalls at the instruction decoding stage, as well as the

penalties at the, or the starvation at the, instruction execution stage. The main role of

reservation station is dispatching the instructions from the decode stage to the one of the

entries in the reservation station.

And second role of reservation station is to keep all the non ready operations, non ready

instructions, to be waiting in the reservation station itself. And the third one is select one

ready instruction from the list of instructions that are there in the reservation station to be

issued to the functional unit. In order to do these three tasks our reservation station will be

designed like this. It consists of multiple entries and it has Allocate unit, Issue unit and set of

fields in each of the entries.

Whenever an instruction is decoded and this instruction needs to be despatched to the

reservation station. So, in order to dispatch instruction to reservation station, all we have to

do is we have to check whether there is a free entry in the reservation station. So, as a result

this allocate unit is going to scan through all the entries in the reservation station, to see if

there is a free entry. So, this can be identified by using single bit information per entry, and

that is called as a busy bit.

Whenever we issue an instruction or whenever we dispatch an instruction to a reservation

station, we set the busy bit of the corresponding entry. So that next time if any other decoded

instruction is to be dispatched to the reservation station, we are not going to write that

decoded instruction in to this entry. So, as a result we are not going to overwrite the existing

data with the new data as long as if the busy bit is set. So, allocate unit always scans through

all the entries of the reservation station and identify the free entry which is specified by the

busy bit, that is reset.

And once we identify free entry we dispatch the decoded instruction in to that particular

entry. At the time of dispatching an instruction to the reservation station, the operands may

not be available. So sometimes all operands are available at the dispatched time sometimes

partial operands are available and in other times none of the operands are available. So, as a

result, if the instruction whose operands are not ready at the time of dispatch, we have to send

the register tag to the reservation station.

So that, whenever the producer instruction produces the value to the corresponding register,

we can send the data to the waiting instruction that is stored in the reservation station.

Instructions will be waiting in the reservation station to be selected by the issue unit and we

know that each instruction will have two source operands. And if both the operands are ready,

then we set the ready bit associated with that particular entry. And the issue unit is always

going to scan through all the ready bits of all these entries in the reservation station, and it

can select one instruction from all the ready instructions and this selected instruction will be

issued to the functional unit. So that is a role of issue unit.

So, the allocate unit always keep track of busy bits to identify a free entry in the reservation

station and the issue unit always keep track of ready bits to identify the ready instruction to

be issued to the execute stage. And if the instructions are not having their operands ready then

there will be just waiting in the reservation station itself. So each entry of this reservation

station will look like this, it consist of a busy bit, operand one, a valid bit, operand two, a

valid bit and ready.

So, here as soon as an instruction is dispatched to an entry, we set the busy bit and this

operand one is the source operand one for the instruction and if the operand is already sent or

the operand is available or the operand is ready then we set the valid bit. And if the operand is

not available at the time of dispatch to the reservation station, so we reset this bit and if both

of these valid bits are set that indicates that two operands for this instruction are ready, and

then we set the ready bit. So that the issue stage will keep track of this and it can select this

instruction to be issued to the functional unit.

And we already discussed in the previous modules that in order to improve the overall

performance or in order to minimise the stalls because of the dependencies, as soon as the

operands are produced by the function units, we can forward these operands to the dependent

instructions. So, in order to support that operand forwarding, so what we do is for this

reservation station, we have a connecting path from the output of the functional unit to the

inputs of each of these entries. So, here we have forwarding slots and whenever a functional

unit executes or completes its execution it forwards the computed value back to this

reservation station along with this computed value it also forwards the tag associated with the

operand.

In other words, we forward the register tag as well as the computed value that is going to be

stored in the register and using these forwarding slots, we compare the tags of this computed

value with tags of the operands that are stored in the reservation station. If there is a match,

we are going to write the computed value on to that location and we set the corresponding

valid bit, so that this value is available in the reservation station. And next time when both the

operands are ready, we can issue this instruction to the functional unit.

And also, so here we have support for the dispatch slots because whenever, as soon as we

decode the instructions, we have to dispatch this instruction to the reservation station. So as a

result the dispatched slot is actually going to take care of that where to dispatch which entry

or the decoded entry to be dispatched, so that will be taken care of this dispatched slots. And

whenever the value is computed by the functional unit this forwarding slot is going to take

care of forwarding that value to a particular entry in the reservation station.

We know that if the functional unit is not available, reservation station is not going to issue an

instruction to the functional unit, even though the operands are available. So, in other words,

because there is no availability of free functional unit, we are not issuing the instructions to

that functional unit. So that indicates that the reservation station can take care of structural

hazards properly.

And similarly, if the operands are not available even though the functional unit is available,

we are not going to issue this instruction to the functional unit. That indicates that this

reservation station is taking care of the proper data flow or otherwise this reservation station

is taking care of the read after write hazards.

(Refer Slide Time: 26:22)

So, reservation station can be implemented in a centralized way or distributed way. In the

case of a centralized reservation station, which is typically implemented in INTEL based

processors. Especially this example is for the Intel Pentium pro, so which has a centralised

reservation station. So, once we have a centralised reservation station, so we combine our

dispatched stage as well as reservation station together. So, the decoded instructions will be

dispatched to the dispatch buffer and from this dispatch buffer instructions will be selected

and they are send to the execute stage.

So, here the input to the dispatched buffer is coming from the decode stage in the Inorder, but

the output from this dispatch buffer is going to the functional units in the out of order fashion.

The main advantage with the centralised reservation station is that we can utilise the entries

in the reservation station efficiently. And also because here we have a combined stage for

both the dispatch and reservation station together, so as a result the input side of this dispatch

buffer is called as a dispatch operation and the output side of the dispatch buffer is called the

issue stage. Or we can interchangeably use the dispatch and the issue, especially when we are

dealing with the centralised reservation stations.

And but the main disadvantage with centralised reservation station is whenever we want to

select ready instruction from this entire list of instructions that are stored in the reservation

station, we have to scan through all the entries and that is actually going to consume

significant amount of time as well as the power. Because we know that, here in this particular

design, we have four functional units and each of these functional units may require one

instruction in a cycle. So in other words in a single cycle we may have to dispatch four

instructions from this dispatch buffer to all these functional units.

So, in order to support that we need to have multiported dispatch buffer from at the output

side. So we need to have four ports, so that four instructions can be issued or dispatched to

the execute stage. And we already discussed in the cache memory design once we have

increased number of ports, it is going to increase the overall execution time and also it is

going to incur the hardware overhead as well as the power consumption.

So, as a result in order to eliminate the problems with this centralised reservation station, we

can go for other alternative, where we have a separate dispatch buffer and then we have

reservation station separately. The output from the decode stage will be written to the

dispatch buffer and from this dispatch buffer, we are going to dispatch instructions to

different functional units depending on the type of instruction. And here in this particular

design, we are considering one reservation station for each functional unit. So, as a result,

whenever we want to issue an instruction to a functional unit, all we have to do is we have to

search only in a limited entry reservation station. And each of the reservation station requires

only a single port.

So, compared to this centralised reservation station the entries in the distribution reservation

station may not be utilised efficiently, but because we are going to have only single ported

reservations stations for each of these functional units, the access time will not be significant.

So, effectively there is a trade off, so whether we want to efficiently utilise all the entries in

the reservation station or whether we want to have lesser access latency to select an

instruction from the reservation station. This type of distributed reservation station is

implemented in IBM PowerPC. But note that these two are two extremes of the designs, one

is using the complete centralised reservation station, the other is using a complete distributed

reservation stations.

But as an intermediate to these two designs, we can come up with the clustered reservation

stations, where rather than having one reservation station per functional unit, or rather than

having a single reservation station for all the functional units, we can cluster or we can divide

the reservation station into multiple clusters and each cluster can feed in multiple functional

units associated with that.

So, in other words we can consider an intermediate design where this reservation station is

divided into two sub reservation stations and one reservation station will take care of

supplying the instructions to these two functional units and the other reservation station can

supply the instruction to the other two functional units. So, again because the whole computer

architecture is a design space explanation, so we can come up with an efficient reservation

station, which is not going to underutilise the space in the reservation station, at the same

time it is not going to consume the significant access latency and the area overhead. So as I

mentioned earlier, so the centralised reservation station can utilise the space efficiently, but

the distributed reservation station will have low access latency because of single ported

design we consider. So, having discussed this reservation station now we will move on to the

reorder buffer.

(Refer Slide Time: 32:46)

The reorder buffer is required, whenever we are supporting the out of order execution in our

system. So before that we will define what is an in-flight instruction? An instruction that is

despatched to the reservation station and instruction that is there in the functional units or the

instructions which are finished their execution, but not yet written to the architectural

registers are called as in-flight instructions. And for each of these instructions we are going to

maintain an entry in a table and that table is called as “Reorder Buffer”.

And we know that only finished and non speculative instructions can be completed. When I

say finished, an instruction finishes its execution, for example when I give an add instruction

“ADD R1 R2 R3”. So performing of the add operations R1, R2, R3 contents if it is done then

we say this add instruction is finished its execution. But when we write the final value to

register R1 then we say that this add instruction is completed. Because of out of order

execution a trailing instruction may finish its instruction, but it is waiting for all the leading

instructions to be completed then only this instruction will complete, will write to the

architectural registers.

We can complete only those instructions which are finished their execution and those

instructions which are issued in non-speculative way. In order to enforce this constraint and

also at the same time in order to provide out of order execution, we are going to use a buffer

called as reorder buffer. And reorder buffer is implemented as a circular queue, which consist

of multiple entries and when an instruction is dispatched to the reservation station, we

allocate an entry in the reorder buffer.

And each entry in the reorder buffer consists of multiple fields one is the “Busy bit”, this is

going to say whether the entry is allocated to the instruction or not. So, there is second field

that is called as “Issued” and this is going to specify whether the instruction is issued to the

functional unit or not. And finished field is there, which is going to specify that whether the

instruction is finished its execution or not. And there is a field in the entry that is going to

store instruction address and also we have rename register for each of the operands in our

instruction, because we know that the register renaming is used to eliminate the name

dependencies. And register renaming is one of the main components in our dynamic

scheduling. So as result reorder buffer also has an entry associated with rename register.

And sometimes we issue instructions with some speculation or by predicting something is

going to happen. So, all the instructions which are issued in a speculative way, we have to set

the corresponding bit in an entry, so for that will have “Speculative” field in our entry and

also we have a valid field. So, this valid field is going to specify whether the instruction is

valid to be completed or not. Sometimes what happens is, because of some exceptions on we

may have to invalidate all the entries. So, in those cases we require a separate field in our, for

each entry in reorder buffer, and that is a reason why we consider this valid bit.

Effectively each entry consists of multiple fields and each field is going to do a specific task.

And whenever we are going to dispatch an instruction to the reservation station, we have to

see whether there is a free entry in the reorder buffer. So that will be indicated by this busy

bit, if the busy bit for an entry is reset, then we can select that entry and we can store that

instruction in that particular entry. And once we stored the instruction in that then we move

this tail pointer towards left so that it will point to the next free entry in the reorder buffer,

because we are implementing this as a circular queue.

So, this tail pointer will be advanced towards left, whenever we are inserting new instruction

into an entry. And the completion of instructions will happen only in the In-order, that is in

the program order, so in order to ensure the In-order commit, we are going to commit only

from the head pointer side that is from this side. So, the head pointer will be pointing to the

next instruction that is going to be completed.

And once this instruction selected and moved to the commit stage or a complete stage we can

advance the head pointer towards left, so that it is pointing to the next ready instruction, next

instruction in the sequence to be committed. And all these instructions, which are there

between this head pointer to the tail pointer, are called as in-flight instructions. Because we

know that these instructions will be there in different hardware components in our superscalar

processor. Either they will be there waiting in the reservation station or there will be executed

by the functional units or there will be just finished their execution but not yet completed

their commit stage.

So, these are called as in-flight instructions and for all that in-flight instructions, we are going

to have one entry in our reorder buffer. And using this reorder buffer we will ensure In-order

commit, so that the program correctness is maintained, even when there is an interrupt

happens or even when there is an exception happens. With the help of this reorder buffer we

can execute instructions in out of order fashion, without creating any program incorrectness.

When we are issuing any instruction in a speculative way, we have to set the speculative bit,

but after some time the speculation is resolved. That means like for an example for a control

instruction, we predict that the branch is going to take place and we dispatch instructions in

the predicted path.

So, all these instruction which are dispatched predicted in path we have set a speculative bit

one, and after some time the branched condition is resolved. And if our prediction is correct

that means whatever we speculated earlier is actually correct, then in that case we have to

reset all this speculative bits associated with these instructions, which are dispatched in a

speculative way. So, those things will be reset so that these instructions can be committed

once they finish their execution.

So that means like whenever we are going to select an instruction pointed by head pointer

from the reorder buffer to complete, we have to ensure that the speculative bit for that

instruction is reset, and also the valid bit is set and also whose finish bit is also set. Because

there may be a scenario where instruction can come to head of this ROB but the instruction is

not at its finish its computation, if it is so its finish bit is set to be a 0.

So, as a result we cannot proceed with this and even when there is a trailing instruction which

finishes its execution, we cannot commit this second instruction unless the first instruction is

completed. So because of this restriction, we are able to complete the execution, we are able

to ensure the in-order commit. So, as a result, like a in the entire superscalar processor design,

there are three important components one is reservation station, the second one is reorder

buffer and the third one is dynamic execution core that we are going to discuss in the coming

modules. These are the three critical components in our superscalar processor to enable the

dynamic scheduling.

(Refer Slide Time: 41:57)

Finally, so we have this completion stage. So this completion stage will finish the execution

of an instruction and update the machine state. So, if I consider an example “ADD R1, R2,

R3” where R2, R3 are source operands and R1 is the destination operand. So once add

operation is finished then the instruction is set to be finished its execution, and when we write

the value to the architectural register, that is R1, then we say that this instruction is

completed. When we update the architectural register with the computed value then this

instruction is said to be completed. In other words, when we are writing to the destination

register, then we are actually updating the machine state.

And once the commit is done we cannot recover the previous state. So after the commit is

done we overwrite the earlier content that is stored in R1 with the new content and once the

over writing is done, we cannot recover the earlier data that was stored in R1. So that is a

reason why whenever we are going to complete an instruction, we have to ensure that this

completion is not going to create any problem with the machine state.

That means like, unless we are sure that the instruction is needed to be completed, we have to

keep that instruction waiting. Once everything is taken care, once we know that, once we are

sure that we can go ahead with a completion of an instruction, then only we can proceed with

the completion stage. If that is not the case we should not do that. So in other words for

example, if we issue an instruction in a speculative way and the speculation is not yet

resolved, then we should not proceed with this instruction for the completion stage. If you do

that after completing speculatively executed instruction, we update the machine state.

That means, we update register content and after that if we identify that our speculation is

wrong then we cannot revert the state back to the original state. So, that is going to create

problems so that is a reason why we have to ensure that only the proper instructions will be

going through the completion stage. So for that our reorder buffer will help in identifying

suitable instructions which can go through the completion stage. And all the ALU and the

load instructions will go through this completion stage and will update the architectural

registers. In other words we also say that the machine state is updated.

So by the way machine state is nothing but the state of all the contents of all architectural

registers and the contents of our program counter and another things. And we require this

machine state whenever there is any exceptions happens or whenever there is any interrupt

happens, we have save this machine state. So that when we resume the execution then we

have to execute from the proper state that is the reason why we need to remember, this

machine state. And for all the store instructions, we have to update the memory with the store

instruction content, with the content specified in the store instruction.

So, we consider a separate the pipeline stage in the superscalar process that is called as a

retirement stage. And the retirement stage is for only the store instructions so this retirement

stage will take the instruction from the store buffer, and will be written to the memory

whenever the memory is free. We also know that among the load and store instructions, loads

are critical from the performance point of view and the stores are not so critical. As a result

whenever there is contention for the memory to be used by both loads and stores, we have to

give priority for the loads so that the processor will not be stalled for the load value and it can

improve the overall performance. Since, we are giving importance for the load instructions,

when there is a load and store instructions contending for the memory.

So this store instruction will be writing to the store buffer and from the architecture point of

view, we can say that the store is completed, but the actual data will be written to the memory

only in the retirement stage. So, another words store may complete by writing to the store

buffer, but it retires only when the data is written to the memory. So, there may be several

cycles between writing to the store buffer and writing to the memory because memory will be

busy with dealing with the load instructions and so on.

So, as a result we will write all the contents of this store instructions to the store buffer as

long as store buffer has enough entries. If store buffer is full, then we have no other option we

have to take the control of the memory and write the data from the store buffer to the

memory. So that we will get some free entries in the store buffer after that again we can to

give the control of the memory to the load instructions, if there are any load instructions

waiting to be serviced. And while we are executing the instructions, we may get an interrupt.

Interrupt can be issued by the operating system or some other external device. So, whenever

there is an interrupt occurs then we have to service, we have to take care of that interrupt.

That is by executing the interrupt service routine associated with that particular interrupt.

So, effectively whenever there is an interrupt occurs, we stop fetching the new instructions

into the system, but we are not going to flush the pipeline stages because different

instructions may be there in different hardware components, and all the in-flight instructions,

we are going to execute them completely and then we start executing the interrupt service

routine. Only when the in-flight instructions are completed their processing then only we start

servicing the processor interrupt service routine.

And so that is again with the help of reorder buffer, we are going to take care of this scenario.

Because we know that which instructions are in-flight by using the reorder buffer all the in-

flight instructions, are indicated by the pointer starting from the head pointer to the tail

pointer in our ROB, all the instructions which are in-flight and all the instructions we have to

complete their execution. But we stop fetching the new instructions until we service our

interrupt service routine. This is about the interruption, and this can happen because of an

external event or the operating system will issue an interrupt.

But there is another scenario where there is no external interrupt, but with the execution of an

instruction we may get an exception. For example, when we are dealing with a floating point

instruction, we may get an overflow or when we are dealing with an ALU operation, we may

have a “Divide by 0” exception. When we have such type of Overflow, Underflow, Divide by

0 exceptions and so on, then we have to deal with those things in our execution of the

program. So that is where an exception happens the result of the computation will no longer

be valid and because we know that using superscalar processors, we execute instructions in

out of order fashion.

So, when we are executing the instructions in out of order fashion a trailing instruction may

be executed before the leading instructions and this trailing instruction may create an

exception, such as “Divide by 0”. When such things happen, then we need to recover the state

of the machine or we need to restore the proper state of the machine or we need to the go

back to the proper state of the machine before the execution of this trailing instruction which

created an exception. So, that means like we need to have the support in our processor to deal

with this exception scenario.

If any processor which has support for this, then we can say that the processor supports the

precise exceptions. If the system supports the precise exception then the system can check

point state of the machine instruction by instruction so that at any point of time if any

instruction is going to create an exception, we already save the state just before that exception

instruction, so that we can compute without any problem.

So, again ROB is going to take care of these precise exceptions, and whenever we execute an

instruction, which creates an exception. So, what we are going to do is all the instructions

starting from that exception instruction, and all the trailing instructions which are issued

starting from that exception instruction will be invalidated. Because we have one field in our

ROB per entry that is a valid bit and we can invalidate the corresponding instruction so that

these instructions are not going to have any impact on the machine state or the processor

state.

Effectively, so using our ROB or reorder buffer we can take care of this precise exceptions.

So, with that I am concluding the organization of superscalar processors and in the next

module we are going to discuss another important component in superscalar processor that is

Register Renaming. And we know that register renaming is used for eliminating the name

dependencies.

Thank you.

