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Quantitative Principles of Computer Design

In the last module, we discussed the layered view of computer design as well as the overview

of computer architecture course. So, in this module we look at the quantitative principles of

computer design. So, before discussing the principles of computer design let us spend few

minutes on looking at the growth in the processor performance, in the last 4 decades.

(Refer Slide Time: 00:39)

So, this graph shows the growth in processor performance starting from 1978, all the way up

to 2010. And the x axis shows the time line and the y axis is the performance with respect to

VAX 11/780 machine. If you see the graph, the processor performance is increased almost

like 25000 times. So, the main reason for this high performance improvement, in processors

is  because  of  two  reasons  -  one  is  advancements  in  IC  technology,  the  second  one  is

advancements in computer design which is mainly contributed by architectural innovations.

So, if you see the graph you can find three regions - one is from 1978 to 1986, in this period

the processor performance was almost 25 percent per year improvement. The second phase is

86 to 2003, where the processor performance increased significantly at a rate of 52 percent



per year and in the last phase the performance was not so much improved as that of the

previous periods, but there is some improvement like 22 percent per year. 

And coming to architectural innovations in this first phase of the processor performance, it is

mainly because of increase in the processor word size so started with 4 bit processors to 8 bit

processor  and  so  on.  So,  once  you  increase  the  processor  word  size  you  can  perform

operations much faster. In the second phase, the processor improvement is mainly because of

architectural innovations, which are typically exploiting instruction level parallelism, which

is  in  other  words  like executing  instructions,  independent  instructions,  in  an  out-of-order

fashion, also implemented in Superscalar processors and also exploiting threading, it  is a

multithreading, hyper-threading, simultaneous multithreading and so on.  Because of these

things,  coupled  with  multi  levels  of  cache  hierarchy,  we  were  getting  a  significant

improvement in the processor performance. 

But in 2003, because of so many road blocks such as the power wall, frequency wall and the

thermal,  because  of  all  this  reasons,  the  processor  performance  was  not  significantly

improved. Note that if you see the second phase of this graph, the increased clock frequency

starting from 22 mega hertz all the way up to 3.2GHz. So, this is affecting like a thousand

fold increase in the clock frequency, which actually contributed to a significant processor

performance, but with the same trend we were not able to continue beyond 2003 because of

the thermal issues. 

Remember that, because of the advancements in the fabrication technology, and the processor

technology, we were able to integrate more and more transistors on a single chip. According

to Moore’s law, the number of transistors integrated in a chip doubles every 18 to 24 months.

And he gave this idea almost like 50 years back and recently we have celebrated 50 years of

Moore’s law, even today the rule is holds true.

Now imagine a scenario, where you have billions of transistors on a single chip and all these

transistors  are  working simultaneously and if  you apply if  you clock these  transistors  at

3.2GHz or more then they are going to consume too much power. And power per unit area is

also called as power density, it increases significantly. And because of this power density,

power density translates to heat dissipation and we will get the thermal issues.

And because of all these problems the technologists have decided not to increase the clock

frequency at a rapid rate, as what they were doing the last twenty years or so. They said like



rather  than  going  for  increasing  the  clock  frequency,  let  us  go  for  reducing  the  clock

frequency or keeping the clock frequency at  the same, at  the same point,  but have more

collection of processors,  each is  a simple core and working together  to compute a given

problem efficiently. That is where the multicore era started. So, once you have a multicore

processor, rather than a one complex processor to do a given task, now we can have two or

four small processors working together and if the application is parallelizable efficiently, then

we can improve the performance.

There is a main design paradigm change in 2003 and using this multi-core scenario, we were

getting a performance improvement of almost 20 percent per year, after 2003. Now of course

we are currently in multicore era, even if you see a mobile cell phone, we have like 2 core, 4

core and 8 core processors.  Now we are in the multi-core era  where the mantra  is  have

collection  of  simple  cores  working  together  to  solve  a  bigger  problem  efficiently.  So,

effectively, now if you can see the summary of this graph, it shows that the innovations in

computer architecture play a key role in improving the overall processor performance or the

system performance. Having said that, now we look at the principles of computer design. In

the  last  module,  we  discussed  that  computer  architecture  is  nothing  but  Instructions

architecture, micro architecture and efficient implementation.

(Refer Slide Time: 07:43)

So,  here  we  need  to  understand  a  point,  given  an  ISA,  we  can  come up  with  multiple

microarchitectures. For example, Intel Xeon processor and AMD Opteron processor, uses the



same ISA, 64-bit X86 ISA. So, that says that, based on the application requirements we come

up with the functional requirements and we fix our ISA. But after fixing the ISA, we need to

come up with an efficient microarchitecture because there are multiple microarchitectures

you can realize for a given ISA. 

Now, the second point is, once microarchitecture is fixed, it can be implemented differently.

An example is a Xeon 7560 and core i7 processors from Intel, both have almost the same

microarchitecture,  but  their  implementations  are  different.  When I  say  implementation  is

different, so they may clock at different frequencies and they may have different memory

systems and so on. So, from these two points, it says that the computer architecture is nothing

but the design space exploration because each microarchitecture and each implementation

will have a different power performance points. So, you have a spectrum of design points and

you need to select a good design point, based on your application requirements.

So, now if we come up with an efficient computer architecture, which in turn provides us an

efficient computer. So, how do we come up with efficient computer architecture? What are

the principles we need to follow? The first point is taking the advantage of parallelism. If you

see the computer, or if you see the computer design, we can exploit the parallelism at various

granularities starting from a finer granular point, which is a bit level parallelization, all the

way up to very coarse grain parallelism which is the thread level parallelism.

If  you  see,  if  you  recall  the  graph  whatever  we  have  shown  in  the  previous  foil,  the

architectural  innovations  constitutes all  these things.  In the initial  phase of  the processor

performance graph, we saw that it  is mainly because of bit  level parallelization from the

architectural point of view, we were getting an improvement.  And when we come to the

extreme end, the architecture innovations are mainly because of the core level parallelization,

or  the  thread  level  parallelization.  So,  when  I  say  a  bit  level  parallelization  rather  than

performing operations on let us say 4 bits, if we perform operations parallel on 8 bits, we can

get more performance improvement.

So, effectively now, what is going to happen is, when I consider an 8 bit processor, if I want

to perform two 64 and 16 bit number addition, I need to read two instructions one for LSB 8

bits and the other for MSB 8 bits. On the other hand, if I consider a 16 bit processor, I can do

that in using a one instruction. So, this second point is instruction level parallelism, because

most of the applications, if you see the instructions can be independent in some scenarios or



even if they are dependent, we can overlap their operations, execution of the instruction can

be overlapped. For example, if you see the lifetime of an execution of an instruction, the

instruction will follow through a different stages. First is the Fetch, second is Decode, third

one is Execute, Memory Read, Memory Write and finally the Commit ((Refer Time: 12:17)).

So, if you see here, when an instruction is in the Decode stage, the next instruction can be in

the Fetch stage. Similarly, when the first instruction goes to data read, the second instruction

will go to decode and third instruction will go to fetch stage and so on. So, effectively we can

overlap the execution of instructions, this is called as a pipelining concept. We can exploit

pipelining concept to improve the processor performance and this is especially true, when the

instructions in some sense are dependent and so on. But, when the instructions are completely

independent and so on, and if the processor supports multiple functional units and so on, we

can  actually  execute  these  instructions  independently  and  that  is  what  the  Superscalar

processors are going to do. 

We are going to discuss these pipelining and superscalar concepts,  when we come to the

corresponding modules. But the instruction level parallelism is one of the main contributors

for a significant growth of processor performance. After this instruction level parallelism, the

next level of parallelism we can exploit is at the data level. Example - if you consider a

graphics application, we may not always need operations to be performed on a 32 bit data,

and most of the times it may be on byte level data, 8 bit data and so on.

You  can  perform  operations,  a  single  operation  on  multiple  data  items.  In  other  words

operations can be performed on a data string, this is an example of SIMD - single instruction

multiple data stream. Whatever we discussed in the last module the Flynn’s classification of

computer architecture, SIMD is one of the classifications. So, SIMD architectures typically

exploit the data level parallelization and SISD exploits the instruction level parallelism.

And  after  this  data  level  parallelization,  the  next  component  is  the  Thread  level

parallelization. Here if an application can be divided into multiple tasks or threads and if we

have  a  hardware  support  to  run  these  threads  simultaneously,  we  can  improve  the

performance at a rapid pace. So, all these independent threads can be executed on multiple

cores and they will give you a significant improvement by reducing the overall computation

time  of  that  application.  So  effectively  now, in  order  to  exploit  these  different  types  of

parallelization,  starting from bit  level  all  the way to the thread level,  we need to  have a



support from the microarchitecture, the hardware, the ISA. In other words, the architecture

needs to be supporting all these things to exploit these parallelizations. The next component is

principle of locality.

What is principle of locality? Typically there is  a thumb rule which says that a program

spends 90 percent of its execution time in only 10 percent of the code. This says that, the data

and instructions that we used recently will be required mostly in the near future. So, there are

two types of principles of locality, one is the spatial locality and the other one is temporal

locality.

What is spatial locality? Spatial locality indicates that, if we access some data or instructions

now, there is a high chance that I will access the nearby data and instructions to that particular

recently accessed element. Now temporal locality indicates that if I access an item now, there

is a high chance that the same item will be accessed in the near future. So, how can we

exploit this principle of locality? 

For that our microarchitecture needs to have a cache memory. We know that the data and

instructions typically stored in the memory. Now always going to the memory to access these

instructions and data will be very costly, because the processor frequency is much higher

compared to the clock rate with which the memory is operating. So, as a result if you are

always going to the memory, we are going to degrade the performance significantly.

So, as result what we can do is whenever we go to the memory, we bring a large chunk of

data from the memory and put that in a fast memory, which is called as a cache memory,

designed using SRAM ((Refer Time: 178:33)) based technology. When I say large chunk of

data, it will not be in kilobytes or whatever, but typically we consider 32 bytes or 64 bytes of

data. Anyway we are going to discuss the cache memory in detail in the next unit.

So, effectively we need to have the architecture that should exploit parallelism available at

varied granularities. And also we need to have computer architecture, which need to support

the  cache  memory.  The  third  and  the  most  important  component  for  improving  the

performance or to come up with an efficient computer design is focusing on the common

case. For example, consider a scenario where you have a pipelined processor where different

stages of pipelines are - Fetch, Decode, Memory Read, Execute and Commit. And you also

have set of functional units - adders, integers-multipliers, floating point multipliers and so on.



But if we see a scenario for executing most of the applications, we frequently access or use

our fetch unit, decode unit, execute unit and so on, as compared to using the floating point

multiplier. Given this scenario, we always have to put our efforts in optimizing this fetch unit,

decode unit, execute unit and so on. Rather than putting our efforts on optimizing, a floating

point multiplier. How do we quantify that? If I optimize a particular component, how much

performance I can get? Because, we need to have some quantification mechanism so that

before actually designing the processor, we will validate different alternatives and then come

up with the best one. So, to do that we consider the famous Amdahl’s law.

(Refer Slide Time: 19:51)

Before describing what is Amdahl’s law, let us define “Speedup”. 

Speedup=
The performance of anentire task usinganenhancement appliedwhen possible

The performanceof the entire task ,without using anenhancement

Let us think we have an enhancement that we want to apply on a piece of code. When I apply,

what is the performance I am going to get and without applying that what is the performance

I am going to get and when I take the ratio of this then what I am going to get “Speedup”.

That shows that, we will get this much Speedup when I apply this particular enhancement on

the piece of code. 

Now, having defined the speedup, let us look at the Amdahl’s law. Amdahl’s law states that

performance  improvement  to  be  gained  from using  some enhancement  is  limited  by  the

fraction of the time the enhancement can be used. So, remember it has two components one is



“The performance improvement to be gained by using some enhancement” and the second

one is “The fraction of time the enhancement can be applied”.  So, if the fraction of time the

enhancement applied if 0, then you are not going to gain any performance improvement.

On the other hand, for the complete execution of the time if the enhancement is applied then

you will get a significant improvement in the performance. So, by the way the performance is

inversely proportional to the execution time. So, as a result the speedup can also be written as

Speedup=
Execution time for the entire task ,without using any enhancement

Theexecution time for the entire task ,whenusingthe enhancement when possible

So,  this  Amdahl’s  law  can  be  expressed  as  “the  speedup  achieved  because  of  the

enhancement  applied”  and  “the  fraction  of  time  the  enhancement  is  possible”  which  is

nothing  but  it  is  -

Speedup=
1

(1− Fractionof the timeEnhancement is applied )+
Fractionof timeEnhancementapplied

The speedup achieved because of enhancement

We know that speedup enhanced is calculated by this particular formula, so this shows that

even when you apply enhancement,  your  overall  performance is  actually  dictated by the

fraction of the time the enhancement is considered.

(Refer Slide Time: 22:51)



So, let us consider few examples to understand this Amdahl’s law and then comparing design

alternatives for different processors. The first example is to consider two processors – Aold

and Anew, and Aold spends 30% of the time in computation and 70% of the time waiting for I/O

operations. Some enhancements are incorporated in Anew Processor, so that it  achieves 15

times  improvement  in  the  computation  time.  What  is  the  overall  speedup  gained  by

incorporating the enhancement to know whether Anew is better or Aold is better. So, we need to

find the performance achieved with Anew and Aold, for that we use the Amdahl’s law whatever

we discussed in the previous slide.

According to Amdahl’s law,

                       
SpeedupOverall=

1

(1−fraction of enhanced )+
fractionenhanced
speedupenhanced

  

This is effectively like you can say,

SpeedupOverall=
1

Fractionof component enhancement not applied+
Fractionof timeenhancement isconsidered

Speedup achieved because of the enhancement

And from the data given in the problem statement,

                                        FractionOf Enhanced=0.3  

because 30% of the computation on 70% time is spent for the I/O. And we are applying the

enhancement only for the computation part. So, effectively our enhancement applied to 0.3%

of your total execution time and 0.7% of the time, where no enhancements are applied and

when  I  apply  the  enhancement,  we  know  that  the  speedup  we  achieve  is  15  times.

Substituting these values, so we will get -

                                          SpeedupOverall=1.38

This is effectively says that Anew processor will be having 1.389 times speedup with respect to

Aold. So, effectively we can go for this enhancement and improve the performance. 



(Refer Slide Time: 25:09)

Consider second example, application where floating point instructions are responsible for 50

percent of the execution time for an application while floating point square root is responsible

for 20 percent of the execution time, and compare the following design alternatives, assuming

that both alternatives require the same effort. Design 1 is make all floating point operations in

the processor run faster  by 1.6 times,  the design 2 is  speedup floating point  square root

operation by 10 times speedup.

So, if we just without computing, if we just look at this design 1, design 2 and we may be

tempted to say that floating point square root operation will be better, because it gives a 10

times speedup versus1.6 speedup for the design 1. Now let us see whether that is true or false.

According to again Amdahl’s law,

SpeedupOverall=
1

Fractionof timeenhancement not applied+
Fractionof timewhere enhancement applied
Speedupachieved withthe enhancement

For the design 1, where we make all floating point operations, execute much faster by 1.6

times and we know that floating point operations constitute 50% of the execution time.

So effectively,

                                     
SpeedupOverall=

1

1−0.5+
0.5
1.6

=1.23



Overall speedup we achieve with the design 1 is 1.23 with respect to the base processor. And

design 2 we know that floating point square root operations constitutes 20% of the execution

time.  So, effectively 0.8% of  the time no enhancement  applied and 0.2 times we get  an

improvement of 10x in executing the floating point square root operations. So, when we

substitute these values in the Amdahl’s law, we get the speedup of 1.22. So, this shows that

design  1  is  better  than  design  2.  Remember  in  these  two  examples,  we  consider  the

optimizations  incorporated  within  a  processor, but  actually  Amdahl’s law can be applied

across processors also.

(Refer Slide Time: 27:43)

To illustrate that, let us consider a simple example when parallelizing an application, the ideal

speedup  achieved  is  equal  to  the  number  of  processors.  What  is  the  speedup  with  100

processors  if  80  percent  of  the  application  is  parallelizable,  ignoring  the  cost  of

communication. Let us consider an ideal scenario where communication cost is 0 and in an

ideal setup, if I have n processors and if my code is thoroughly parallelizable I can get a

speedup of n.

Now, in this particular example we consider 100 processors. Now, we will see, what is the

improvement we will get with these 100 processors when my code is 80% of parallelizable.

So, we can restate Amdahl’s law as speedup overall is equal to



SpeedupOverall=
1

1−Faction of time parallelizable+
Fractionof time parallelizable

Speedupachieved withthe parallelization

It is nothing but,

SpeedupOverall=
1

Sequential Portionof theCode+
Parallel portionof the code
Speedupachievedwith number of processors

Note that when the code is sequential even when you have 1000 processors, you have to

execute the sequence of instructions in the sequential portion, in a serial fashion. So, you

would not get any speed, but whereas, if the portion of the code is parallelizable and when we

assume that the communication cost is 0, and in an ideal scenario where every instructions

executed takes 1 unit of time and so on. So, we can get, with 100 processor we can get, 100x

speed.

So, substituting these values in this equation, so fraction of parallel portion is 0.8, sequential

portion is 0.2 and effectively the speedup with 100 processors is -

                                         
SpeedupWith100Processors=

T (1 )

(T (1 )

100 )

where T1 is “The total time it takes for a single processor to complete the task”. And the

speedup is 100 here and the speedup overall is 4.8 which shows that even when you have

80% of the code parallelizable, even with 100 processors at your disposal you can get not

more than 5 percent improvement in performance.

So, this also shows that, to have an efficient computer design, in addition to having efficient

computer  architecture,  we  need  to  have  support  from  the  different  other  layers  of  the

computer  design.  Those  are  like  algorithmic  layer,  high  level  programming  layer,  the

operating  system  layer,  the  system  software  everything.  We need  to  have  an  efficient

compiler, we need to have an efficient program, and we need to write a parallel program. So,

all these things actually contribute to the overall efficient design of a computer. We will use a

processor performance equation.



(Refer Slide Time: 31:03)

We define a CPU time as nothing but “The total number of CPU clock cycles an application

takes when we are executing that application on a given processor”. Remember, if I just give

you CPU clock cycles without considering the cycle time, it makes no sense because, I may

say 100 CPU cycles, on one processor for such 1000 CPU cycles on another processor. And if

the first processor is running at 10 MHz frequency and the second one is working with 1 GHz

frequency. So, which one is better? Actually the second one is better, even though the number

of clock cycles it takes is more.  The reason is the second processor is working at  1GHz

frequency whereas the first one is working at 10 MHz.

So, in other words when we specify the clock cycles, we need to give the cycle time also.

Effectively, the total CPU time for an application to execute on a given processor is equal to

the product of the number of CPU cycles and the CPU cycle time or the clock cycle time. So,

once we consider the CPU time, we also can measure the number of instructions in a given

program that is denoted as instruction count or IC. Once we have an instruction count and

also the total number of CPU clock cycles for a program, we can define clock cycles per

instruction or CPI. CPI is the ratio of “CPU clock cycles for a program” and “instruction

count”. 

So, when we substitute this in the first equation, 

            CPU time=Instructio count ∗Clock cycles per instruction∗Cycle time



So, effectively given a program, and also given the characteristics of a processor, we can

identify what is the clock cycle time, we can identify what are the number of instructions in

the program based on our ISA, and we can calculate the CPI when we execute program on

the processor. So, to optimize the CPU time because ultimately our overall idea is to improve

the overall performance, to improve the performance you need to reduce the execution time.

In other words, we need to reduce the CPU time. To reduce the CPU time, either we can

optimize instruction count or we can optimize CPI, or we can optimize the clock cycle time.

But this is not that straight forward. If you try to optimize one of these things, it  has an

impact  on  the  other  two  components.  The  reason  is  IC  -  Instruction  Count  is  actually

dependent  on  the  given  ISA and  the  compiler  technology. So,  we  can  come  up  with  a

complex instruction to perform a complex task, versus a simple set of instructions which may

require four instructions to perform the task.

Now, in  the complex instruction scenario,  my IC is  equal  to 1,  in  the simple instruction

scenario my IC is equal to 4. So, if I go for a complex instruction then IC is equal to 1, but

the problem with that is because the complex instruction is considered, it is going to increase

your clock cycles per instruction. So, effectively when I am trying to reduce optimize one

component,  it  has  an  impact  on  the  other  component.  Clock cycle  time  depends  on  the

hardware technology and the microarchitecture.

So, this effectively shows that each of these components are determined by multiple different

components.  So,  we  have  to  be  intelligently  optimizing  these  things  without  having  a

significant  impact  on  the  other  components  then  only  we  can  improve  the  overall

performance of the system. So, we know that -

                                      CPU time=IC∗CPI ∗Clock Cycle Time  



(Refer Slide Time: 35:50)

This can also be written as -

                                     CPU time=(∑
i=1

n

IC i∗CPI i)∗Clock cylcetime

 For  example,  I  have  an  application,  which  consists  of  add  instructions  and  multiply

instructions, 80 percent of instructions are add instructions and 20 percent of instructions are

multiply instructions. 

Now if I want to compute the CPU time for that particular application all I have to do is, 

       CPU time=0.8∗CPI of add Instruction+0.2∗CPI of Multiply Instructions

Take the sum and multiply with the cycle time. This can be written as -

                                                          IC i /IC

where  ICi is  instruction  count  of  a  particular  instruction  type  by  the  total  number  of

instructions  in  the  program.  So,  effectively  I  take  the  fraction  of  the  instruction  type,

multiplied with the corresponding CPI and take the sum of all  in the program, and then

multiply with cycle time, you will get the overall CPU time.



(Refer Slide Time: 37:06)

Let us consider an example, Consider an application where the frequency of floating point

operations is 25 percent, and the average CPI for the floating point operations is 4. Averages

CPI of all other operations is 1.5 and assume that the frequency of floating point square root

operations is  2 percent,  and the CPI of floating point square root operations is  20.  Now,

whether decreasing the CPI of floating square root operations to 2 is better as compared to

decreasing the average CPI of all floating point operations to 2.5. So, how do we compare

these  two design alternatives  and suggest  the  best  one.  To do that  we use  the processor

performance equation.

(Refer Slide Time: 37:56)



We know that,                          

                CPIOriginal=∑ The instructioncount fraction∗ correspondingCPI

So, in the original case, we have -

25%  of  the  instructions  are  floating  point  which  takes  4  cycles  as  CPI  +   rest  of  the

instructions are 75% which takes 1.5 as CPI is effectively 2.125. And CPI of design 1, the

design 1 which says that we can go for optimizing floating point square root operations, so

that it reduces the CPI from 20 to 2.

So, the CPI of design 1 is equal to 1.765. Yes, this is better than the original CPI, but it is not

saying anything about whether it is better with respect to design 2. Let us see, what is the CPI

of design 2.  So, a design 2 is, we optimize all floating point operations and the average CPI

of all floating point operations now reduce to 2.5 as compared to the original 4, and they have

not touched any of the other non-floating point operations, which have CPI of 1.5. So, it is

the total CPI for the design 2 is 1.75, so which says that the design 2 is better than design 1. 

Remember, when we say design 2 is better, because the CPI is reduced. Because lower the

CPI, we are going to get the higher performance, because we spend minimum number of

cycles to execute an instruction. So, lower is better, when we consider CPI as metric. So

effectively, design 2 is better, in other words optimize all floating point operations rather than

considering floating point square root operations. This also again comes back to our previous

discussion; concentrate on the common case because floating point operations constitute 25

percent  of the total  operations  whereas,  the floating point  square root  contributes only 2

percent of the total instructions. So, with this I am concluding this module. Next module, we

are going to discuss the instruction set architectures. 

Thank you.


