
Computer Architecture
Prof. Madhu Mutyam

Department of Computer Science And Engineering
Indian Institute of Technology, Madras

Module – 06
Lecture – 19

Instruction Dependencies

So, in the last module we discussed the limitations of scalar pipeline design and suggested

super scalar pipeline design. In super scalar pipeline design so, we can execute instructions in

out of order fashion. In order to execute the instructions in out of order fashion, so at the

dispatch stage we will select the instructions which are independent and if the functional unit

is available we can issue these instructions to the functional units. And as a result the

instructions can be executed in an out of order fashion. And all these executed instructions

will be stored in the buffer, the write back buffer, and from there we will commit the

instructions in the program order.

But in order to execute the instructions in out of order fashion, so first of all, we have to

know which instructions are independent. And only the independent instructions can be

proceeded further before the leading instructions. So, for that first we have to identify which

instructions are independent and which instructions are dependent. So, effectively so this

module and the next couple of modules we are going to look at techniques which exploit the

instruction level parallelization. And as the starting point of this instruction level exploitation

we are going to discuss the dependencies among the instructions. And in this module we are

going to look at what type of dependencies exists between instructions in a program.

(Refer Slide Time: 01:50)

So, we know that a CPI of a pipeline design is,

 PipelineCPI=Ideal pipelineCPI+Stalls due to pipeline hazards

So, in an ideal pipeline design the CPI will be equal to 1 and so if there are stalls because of

pipeline hazards then our, the overall CPI will be degraded significantly. So, because of the

stalls in the pipeline our overall CPI will increase and that results in performance

degradation. So, as a result we need to come up with techniques to minimize the stalls due to

pipeline hazards. And as part of this unit we are going to look at techniques which exploit the

instruction level parallelization to minimize the stalls associated with the pipeline hazards.

So, we consider several techniques as part of this instructional parallelization unit, to

minimize the pipeline stalls.

And so, the major thing involved in this instruction level parallelization mechanism is to

identify the dependencies among the instructions. So, identify independent instructions and

schedule them appropriately, so that the pipeline stalls can be minimized. But for identifying

the independent instructions we can take the help of the software as well as the hardware. In

the case of software, compiler can identify independent instructions in the program and

schedule the instructions statically. Or in the case of hardware we can use a dynamic

scheduling. So, at the run time we will identify independent instructions and then issue these

instructions to the functional units appropriately to minimize the overall pipeline stalls so that

the performance can be improved.

So, in this module we are going to concentrate on identifying the dependencies among the

instructions in a program. So, we first start with the data dependencies. So, for example, if we

have two instructions i and j,

(Refer Slide Time: 04:09)

and where j is data dependent on instruction i, such that in the program order i comes first

and j comes later. In this diagram we can clearly see instruction i is writing a value to a

register or a memory and instruction j is reading the value from the register or the memory.

So, if that is the scenario then instruction j is said to be data dependent on instruction i. And

this data dependence can also happen in a transitive way, that is instruction i is writing the

value to a register which is consumed by instruction k and instruction k writes value to

another register or a memory and instruction j is consuming.

So, effectively now we can say instruction j is data dependent on i because this is chain

dependence. So, k is dependent on i and j is dependent on k in a transitive way. So,

instruction j is dependent on i and this dependence is the data dependence. So, effectively

here the actual data flow happens between the producer and the consumer. So, here

instruction i is the producer and instruction j is the consumer. So, effectively this data

dependence is the true dependence, where the actual data flow happens between two

instructions where one is a producer the other one is a consumer.

So, once two instructions are data dependent then based on this data dependence we can

know that there is a possibility of a hazard and it also conveys that the order in which the

results must be calculated and also it gives an upper bound on the number of instructions that

can be executed parallely. So, for example, in this case since instruction j is going to need the

data supplied by instruction i. So, if we execute instruction j before instruction i then there is

a data hazard. And as a result instruction j is going to take the old value and using that it

computes and overall computation will go wrong.

So, as a result when there is a data dependence between two instructions then the instruction

which is going to require the data produced by the instruction which is supplying the data

should not be proceeded before the instruction which is going to supply the data. In other

words when there is data dependence between instruction i and j, where j is going to consume

the value supplied by instruction i, so instruction j should not be executed before instruction i.

So, that indicates that there is a possibility of a hazard if we are going to reorder these

instructions.

And also once there is a data dependence a between two instructions, we know that we have

to execute instruction i first before instruction j because there is a data dependence between

instruction i and j. So, that is nothing but the second point. So, the data dependence conveys

that the order in which the results must be calculated. And finally, once there is a data

dependence between instruction i and j, even when we have multiple functional units in our

super scalar pipeline design we cannot execute these two instruction simultaneously.

At any point of time we can execute only one instruction. So, that also says that because of

the data dependence we will have a limit on the number of instructions that can be executed

parallely. In this example we can clearly see instruction i is writing to a register or a memory

and instruction j is reading that. So, that means like this true dependency can be there on

using a single register, otherwise like instruction i can be writing to a register and from that

register instruction j is reading or instruction i is writing to a memory location from which

instruction j is reading the value. In other words, true dependence can happen because there is

a read and write operation on a register or onto a memory location.

If the true dependence happens because of the registers, register read and write, we can easily

identify the dependence because the number of registers we use in our ISA will be limited. As

a result we can easily name each of these registers and because of that it is easy to identify

the data dependence between instructions if they are using the same registers for read and

write operations. But on the other hand if the data dependence happens because of writing to

a memory location and reading from a memory, same memory location, then it is very

difficult to identify the data dependence.

So, that is the reason why the dependence is that flow through memory locations are difficult

to detect. To clarify this point, let us consider an example, where instruction i is writing to a

memory location which is specified in the instruction as 10(R1). So, it is effectively, the

effective address of the memory location is the contents of R1 plus 10. And there may be

another instruction, instruction j which is trying to read from a memory location which is

specified in the instruction as 20(R2). In other words effective memory address location used

by this instruction j is the contents of R2+20.

Now in this case, it may so happen that,

 contents of R1+10=contentsof R2+20

but it is very difficult to detect this equality unless we calculate the effective address

calculation for both the things. Because of that when the data dependencies involved in the

effective address calculations, then it is very difficult to identify the dependencies. And also it

takes significant amount of time to calculate this effective address and as a result we incur the

stalls in the pipeline. So, as a result compared to the data dependencies that involve in

registers, data dependencies that involve memory locations will be hard to detect or it is

going to create the stalls in the pipeline.

Whereas, in the case of data dependencies that involve register locations, for example,

consider a scenario where instruction i is writing to register R1 and instruction j is reading

from register R1. Here in these two instructions because in one instruction R1 is the

destination register and in the other instruction R1 is a source instruction. We can easily

identify the dependencies and as a result we can detect the data dependencies easily. So, after

these data dependencies we have name dependencies.

(Refer Slide Time: 11:41)

So, name dependencies occur when two instructions use the same register or memory

location, but there is no flow of information. To clarify this point we will consider an

example. So, here in this case, instruction i is reading a value from register or a memory

location and instruction j is writing a value or data to a register or memory. And here we

assume that instruction i is preceding the instruction j. So, in the program order instruction i

is coming first followed by instruction j. So, now because the instruction i is coming first and

when it is reading a data from a register or a memory, it is not going to create any problem

with respect to the following instruction which is instruction j writing to the same memory

location or a register.

So, this is actually called as anti-dependence. So, there is no flow of information between

producer and consumer. Here consumer is instruction i producer is instruction j, but

instruction i is coming before instruction j. In other words consumer is coming before the

producer. So, as a result there is no flow of information and this is called as the anti

dependence. And the dependence here is mainly because these two instructions are using the

same register or memory location. And the other name dependency is output dependence.

So, here again consider instruction i which is coming before instruction j in the program order

and both these instructions are writing different values to a register or a memory location to

the same register or a memory location. So, once that happens, now if instruction i completes

its execution first and instruction j is completing afterwards, then the final value that is stored

in register is the value written by instruction j. On the other hand if instruction j is executing

first and instruction i is executing later, then the final value that is stored in the register will

be the value written by instruction i, but in this case also again there is no flow of information

between these two instructions and in fact these two instructions are producers.

There is no consumer in these two instructions. So, effectively name dependencies are false

data dependences because there is no data flow between producer and consumer, but because

they are using the same register or a memory location. So, as a result there is a dependency

and we have to eliminate this dependency in our program, so that we can schedule these

instructions in an out of order fashion to exploit instruction level parallelization. So, using the

register renaming we can eliminate anti dependence and output dependencies or otherwise the

name dependencies among instructions.

And as part of this unit we are going to discuss register renaming concept and by the way this

register renaming is used only for eliminating the name dependencies between instructions

which are using the same register, it is not for the memory location. In the fundamentals of

pipelining unit we discussed data hazards informally, now we are going to discuss the data

hazards more formally in this module. So, we know that the data hazards happen because of

the dependencies between the instructions.

(Refer Slide Time: 15:19)

So, hazard exists whenever there is dependence between instructions which are at a close

distance. When I say close distance because we are dealing with k-stage pipeline, if two

instructions are within a distance of the number of pipeline stages, then and if the instructions

have some dependence then there may be a hazard. And if two instructions are separated by a

gap which is more than the number of pipeline stages then we cannot get any hazard because

of the dependences because by the time the dependent instruction comes the producer

instruction completes its execution. So, there would not be any hazard because of this

dependence.

So, consider two instructions i and j such that i comes before j in the program order and

because of this dependencies we can have RAW hazard, this is called as “Read after Write”

hazard. So, in this particular scenario, instruction i is coming before instruction j and

instruction i is writing to a register or a memory location whereas instruction j is reading from

the same memory location or the register. Now, if instruction j proceeds before instruction i

because of our out of order execution then it is going to create a hazard, that hazard is called

as read after write.

Actually this read has to be performed after the write is completed, but when we reorder these

two instructions. So, instruction j can read the value from a register or a memory location. As

a result it reads an old value from the register or memory location and that is going to create

wrong computation. So, whenever we have such type of hazards, read after write hazards

then we should not reorder these two instructions. Effectively we should not execute

instruction j before instruction i, if there is read after write hazards between instructions i and

j and instruction i is proceeded instruction j in the program order.

And the second type of hazards is “Write after Write” hazards. So, in this scenario again

instruction i coming before instruction j in the program order and both these instructions are

writing to a memory location or a register. Now, in this scenario if we are going to execute

instruction j before instruction i, finally, the register is going to store the value written by

instruction i, but the program may be requiring the value to be written by instruction j in the

register. So, in that case then there is a “write after write” hazard. According to the program

register at the end of these two operations should contain the value written by instruction j,

but if you are executing instruction j before instruction i, we are going to have the value

written by instruction i in the register and that is going to create “write after write” hazard.

And the third hazard is “write after read” hazards. In this case so instruction j is writing to a

register before instruction i is reading from the register and instruction i is actually proceeded

instruction j in the program order. So, according to the program instruction i should read the

old value and after that instruction j should write a new value to the memory location or a

register, but if you are executing instruction j before instruction i. So, effectively this is going

to create “write after read” hazard.

And the fourth case is because we considered here read and write operations between two

instructions. So, effectively we can have four scenarios. One is read after write, write after

write, write after read and the last case is read after read. But read after read is not going to

create any hazards because you are just the value from a register and it does not matter

whether we are reading for the first instruction or the second instruction because the read

operation is not going to change the value that is stored in a register.

So, as a result there would not be any hazards because of read after read. So, among all these

four scenarios, only the read after read is not going to create any hazard, but all the other

three can create hazards. And effectively when we are planning to reorder our instructions to

exploit instruction level parallelization we have to take care of these hazards. And out of

these three hazards, read after write hazards is actually a true dependence because there is an

actual data flow happens between the instructions which have this read after write hazards.

And in the case of write after write hazard, this hazard happens because these two

instructions i and j are actually using the same register or the memory location.

In other words, instructions i and j are actually using the same output register because they

are writing to a register or a memory location. So, in other words, there is output dependence

and this is a part of name dependence. And similarly, the write after read hazards is

corresponding to anti dependence because here actually there is no flow of information

similar to the write after write hazard and this is also part of the name dependency between

the instructions. In other words write after read and write after write hazards are

corresponding to name dependencies and read after write hazard is corresponding to the true

dependence or data dependence.

So, in the case of name dependencies as we mentioned earlier, if we apply register renaming

concept then we can eliminate this name dependence as a result we can eliminate these

hazards, such as like write after write hazards and write after read hazards. The goal of a

compiler or the hardware techniques is to exploit parallelization by reordering the instructions

where ever there is a possibility, but at the same time preserve the program order in scenarios

where reordering the instructions is going to affect the outcome of the program.

So, as long as the program outcome is not affected by reordering the instructions, our

compiler or hardware techniques can reorder the instructions to exploit instruction level

parallelization so that we can improve the overall performance. So, in summary without

affecting the program order, rearrange the instructions in our program to improve the

instruction level parallelization. So that our underlying hardware that is Superscalar pipeline

design or super scalar processor design can exploit these independent instructions and

execute them in out of order fashion and improve the overall performance.

So, we discussed the data dependencies, we discussed the name dependencies and then we

discussed the hazards associated with these dependencies such as read after write hazards,

write after write hazards and write after read hazards, now we will move onto the control

dependencies. So, control dependencies happen because of the dependence between branch

instruction and the following instructions.

(Refer Slide Time: 23:06)

So, ordering of an instruction with respect to a branch instruction needs to take care of these

points. So, instruction that is control dependent on branch instruction cannot be moved before

the branch. If we move an instruction which is actually control dependent on a branch

instruction before the branch instruction what happens is, this instruction will not be

controlled by the branch anymore. So, as a result if this instruction is supposed to be executed

only when the branch condition is true, now that scenario will be violated, when we move

this instruction out of this the branch reach. In other words, so any instruction that is control

dependent on a branch instruction should not be reordered.

It should be kept as it is, so that the branch condition can control the execution of that

instruction. And similarly, an instruction that is not control dependent on a branch instruction

should not be moved after the branch. If we move such an instruction after the branch then

the execution of that instruction depends on the branch condition. In other words the branch

is now going to control the execution of that instruction and which is actually violating the

program correctness. So, as a result whenever we want to reorder the instructions with respect

to a branch, we have to see whether rearranging of these instruction, rearranging of these

instructions with respect to the branch, is going to create any problem. Like one of these two

and if it is so, then we should not reorder that instruction.

Whereas, if an instruction which is not going to be affected by the branch instruction, then we

can reorder the corresponding instructions. So, effectively as long as the program correctness

is maintained, the control dependencies can be violated. And to maintain the program

correctness we have to preserve the exception behavior as well as the data flow. So, we just

consider an example here. Consider a simple code where we have an add instruction which is

writing a value to register R2 and there is a branch instruction branch equal to 0 condition is

check with the register content R2.

So, if register content R2 is equal to 0 then we are branching to an instruction pointed by L1

and if it is not equal to 0, then we execute the load instruction. So, in this case if we are going

to rearrange these instructions, that is nothing but if we are going to rearrange load and the

branch instruction. In other words if we are executing load instruction before the branch

instruction, it may create an exception. For example, if R2 is equal to 0 and R now the load

instruction is going to read from the memory location 0 and which can give an exception.

So, as a result, like, we should not execute this load instruction before the branch instruction.

In other words, so here in this case, the load instruction is actually dependent on the branch.

So, according to our first point, it clearly says an instruction that is control dependent on a

branch cannot be moved before the branch. When we consider another example, see here an

add instruction which is writing the value to R1 and there is a branch instruction which is

comparing whether R4 content is equal to 0 or not.

If R4 content is equal to 0, then we are going to an instruction which is labeled by L1 and if

R4 is not equal to 0, then we are going to execute this subtract operation which is also going

to write value to R1. And finally, there is a OR instruction which is actually requiring R1 as

one of the source operands to perform this OR operation and the result will be written to the

register R7. Now, in this scenario we can clearly see that OR instruction requires R1 and this

R1 can be supplied by add instruction or subtract instruction depending on the branch

condition.

If the branch is taken then R1 will be supplied by add instruction, if branch is not taken R1

supplied by subtract operation. So, effectively now, we can clearly see that here the input for

the OR instruction depends on the branch outcome. So, in such scenario, we cannot move our

subtract operation before the branch instruction. If we move this subtract operation before

branch instruction. So, as a result what happens is now R1 will have only the value supplied

by subtract operation and because the add is performed earlier to subtract and because the

subtract is performed later as a result that, whatever the value written by add operation will

be over written by the subtract operation.

And even when the condition in the branch is true, we are actually taking the value supplied

by the subtract operation. And that is actually not correct according to the program. So,

according to the program if the condition is true, then we have to get the value supplied by

ADD as an input to the OR instruction and if the condition is false then we have to get the

value supplied by SUB as an input to the OR. So, now because of that when we rearrange our

subtract operation and the branch instruction as a result the program correctness will be

violated.

So, that also says that. So, when an instruction is dependent on a branch instruction, should

not be moved before the branch instruction because when we move subtract operation before

the branch instruction, now branch cannot control the subtract operation anymore. So, as a

result we will have program correctness issue. So, effectively in the first example we know

that when we rearrange the instruction there may be an exception occur in the program. And

in the second case because of this rearranging the instructions there may be a change in the

data flow because the OR instruction is supposed to get the value supplied by ADD

instruction when the condition is true, but because of this rearrangement.

So, now OR instruction is going to get the value supplied by subtract instruction. So, that

means there is a change in the data flow that is actually violating, that is giving, the program

incorrectness. Similarly, in the first example because of the rearrangement, it may create an

exception and that is also leading to program incorrectness. So, as long as the program

correctness is maintained, we can rearrange the instructions, but if rearrangement of

instructions is going to create program incorrectness then we should not do that.

And finally, we consider another example. Here we have ADD instruction which is supplying

the value to R1 register and there is a branch instruction which is checking whether R10 is

having value 0 or not. And if it is 0 then we are going to an instruction labeled by L1 that is

OR instruction, which is going to perform OR operation on R8 and R9 contents and the result

will be stored in R7. And if the condition is false here then we are going to execute SUB

instruction and ADD instruction on the respective registers. And assume that here the R4

register is not used any more in the program.

And if that is the case, even when we move this subtract instruction before the branch

instruction then it is not going to create any problem. And it is not going to create any issue

with the program correctness because when they move the subtract operation before the

branch instruction. So, branch is using R10, but the subtract operation is not dependent on the

branch outcome because we know that the subtract operation value whatever the value

produced by the subtract operation, is not used anywhere in the program.

So, as a result when we execute the subtract operation before the branch condition is known,

it is not going to create any issue with the program correctness. So, when such instructions

are there in the program, the compiler can identify and compiler can rearrange these

instructions efficiently. So, that we can execute this in out of order without having any issue

with program correctness. So, with that we conclude this module.

Thank you.

