
Computer Architecture
Prof. Madhu Mutyam

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module – 05
Lecture – 17

Implementation of MIPS pipeline

So, in the last 4 modules we discussed fundamentals of pipelining. We considered instruction

pipelining. We also discussed pipeline hazards and techniques to minimize the overheads

associated with this pipeline hazards. In this module we are going to consider pipeline

implementation of subset of MIPS ISA. So, again this MIPS ISA is a class of RISC

architectures and we are going to consider a five stage pipeline implementation. So, our five

stage pipeline consists of the Instruction Fetch, Instruction Decode, Execute stage, Memory

access and Write Back.

(Refer Slide Time: 01:04)

In the first stage, that is the instruction fetch cycle, we will read the contents from the

program counter and we go to the memory and get the data stored in that particular address

and store that result in another register called as IR- instruction register. And parallely we also

increment by PC by 4 because here we are assuming it is a 32 bit address. So, that next PC

will be the previous PC plus 4.

And once the instruction fetch cycle is completed the next one is Instruction Decode. As we

discussed earlier in the instruction decode we also perform register read operation. So, once

the instruction is decoded, we know what is the type of instruction it is? and we also know

the addressing mode. And parallely in the register fetch phase, we are going to read the

contents from the register file from the location specified by this ‘rs’ and ‘rt’. Here rs, rt are

the register fields in the instruction.

And if it is of immediate addressing mode, then automatically we will have to read the

immediate field from the instruction register. And we will extend the sign that will be stored

in our temporary register. Here A, B and Imm are temporary registers where we are going to

store these corresponding values. And once the instruction decode and register fetch cycle is

completed, the next one is execute stage. In the execute stage we also perform the effective

address calculation, if the instruction is memory instruction. So, we already know from the id

stage what is the instruction this particular bit stream that is stored in IR or what is the

operation of the instruction that we loaded in the instruction register.

So, based on that type we are going to different operations. If the instruction is memory

reference instructions, that is either a load or a store instruction then we are going to perform

the effective address calculation. That will be by adding the content of A with the immediate

value. So, it is effectively, we have a base address and then we are going to add offset with

that and effectively we are going to get the effective address for our memory reference

instruction. So, that is stored in the temporary register which is ALU output, but if the

instruction is a register-register ALU type instruction, then we are going to perform operation

on the contents of A and B and store that in our temporary register associated with the

functional unit that is ALU output.

And in the case of register immediate ALU instruction type we are going to perform

operation on A and immediate registers and store the result in the temporary register ALU

output. And note that here r indicates the operation that we are going to perform and that is

known from the opcode field from the id stage because after the id stage we know what is the

type of instruction from the opcode field and based on the type of instruction we are going to

perform the corresponding operation on the contents of this temporary registers A, B or Imm.

And if the instruction is a branch instruction then we have to test the branch condition.

That will be tested by a using the second instruction here. That is condition is evaluated to

whether A equal to 0 it is a branch equal to 0 or not, that is what we are going to consider in

this particular simple implementation of MIPS ISA. And parallely if the branch is going to

take place then we have to actually consider the target address. And for that we will perform

the effective address calculation. That is by adding this next PC value and this Imm, but Imm

is shifted by 2 positions to get the word. So because we are working at the word level

granularity, we are going to get the word address by shifting 2 positions and this value is

added to NPC.

So, that that will be the effective target address, if the branch is going to take place. So,

effectively in these 3 stages, we fetch the instruction, we incremented the PC by 4, we

decoded the instruction and came to know the type of instruction we are going to perform.

And similarly, we perform the register read operations from the register file and if it is an

immediate addressing mode is used in instruction, then we will read the immediate value

from the immediate field in the instruction to the temporary register. And based on the type

instruction, we calculate the effective address or we are performing the actual operation. And

once this execute stage is completed the next one is the memory access.

(Refer Slide Time: 06:39)

And in this particular implementation we consider the branch completion only in the memory

access stage. So, here in the memory access if it is a load or a store instruction we have to go

to the memory and then perform the actual operation. So, before that we are storing this PC

value, new PC value into the register PC. And we perform the actual memory reference

operation. If it is a load instruction then based on the address stored in this ALU output which

is calculated in the previous stage as part of effective address calculation and from the

memory in that particular location, then we get the content and that data is stored in the load

memory data register which is also another temporary register.

And if it is a store instruction, then the value that is stored in B is going to be stored in the

memory location specified by the ALU output which is also again an effective address

calculation performed in the previous stage. So, ALU output is going to give you the effective

address, which is calculated in the previous stage. And we go to the memory to that particular

location and store the contents of B in that and if it is a branch instruction. So, based on the

condition we see whether PC needs to be updated or not. If the condition is true then only PC

will be updated with the new ALU output.

So, effectively at the end is this fourth stage, our branch target address is known and branch

outcome is known. And also we perform the memory access whether it is a store operation or

a load operation. In the case of store operation, the store is said to be completed at the end of

this fourth stage. And in the case of this load operation we read the value from the memory

and stored in a temporary register called as LMD.

And finally, in the last stage that is the write back stage. So, now we are going to write the

computed values into the actual registers. If it is a register-register ALU instruction then we

are going to write the value from the ALU output to the register file in a specific location

specified by this rd. And if it is a register immediate ALU instruction, then the ALU output

will be written to the register file at a location specified by rt. And if it is a load instruction

then we are going to store the LMD value to register file at location rt.

Now, we are going to see how this is implemented by considering the data path as well as the

control path? So, before going for the pipeline implementation we will just consider the non-

pipeline implementation of this mixed data path. By the way, any processor design consists of

data path as well as the control path. The data path is going to give you the interconnection

among different hardware components and the control path is going to give you the timing

signals to different components. So, that these components will perform operations based on

some event is happened or at a specific time instance. So, now we are going to look at the

data path associated with this non pipeline implementation of the MIPS instructions. So, the

first stage we discussed the instruction fetch

(Refer Slide Time: 10:10)

So, we are going to consider program counter register, the instruction memory, there is

another register called as an IR instruction register and there is another temporary register

called as a next PC. And we have an order which is going to perform the addition operation

for the contents of PC and 4 and that will be stored in NPC, the next PC. And the next, based

on this IR we take the contents in the IR and give it to the decoder, instruction decoder and

instruction decoder is going to decode what is the type of instruction, what is the destination

addresses, what is the source address for the operands all these things will be performed here

by using a decoder. And we index into the register file to read the register contents.

And these contents will be stored in temporary registers A, B. And similarly, if immediate

addressing mode is used in the instruction, then we have to extend that immediate field,

which is typically 16 bit field in our instruction, and we extend that to 32 bit by extending the

sign and store that either Imm field or signed sign extended immediate the temporary register.

And then next, once we have the contents in A, B registers then we consider collection of

muxes to collect between the NPC or A here as input to the ALU. And similarly, the A value

will be compared to 0 to see whether the condition is going to be true or false. And that will

be stored in the condition register here. And there is another mux which is going to select

between the contents of B as well as the contents coming out of this mux.

And this mux has inputs from the immediate as well as sign extended immediate. And also

we have this registers rt and rd which are given as an input to mux. And this ALU functional

unit is the one which is actually performing the effective address calculation or the actual

operation specified by our opcode. And the output will be stored in the temporary register

associated with this functional unit that is ALU output and the next stage. So, we have

another mux which takes the input from this NPC or output from the ALU output and it will

select one of these two.

And then that will be given as an input to the PC depending on whether the branch is taken

place or not taken place, the mux will select one of these 2 inputs. And then that will be sent

as an input to the PC so, that the next PC will be updated accordingly. And if it is a memory

access operation then we consider this ALU output as one input and similarly, the B as

another input and so based on that we perform the actual operation, whether it is a write

operation or a read operation.

And if it is a read operation we are going to read from the specified location and the data will

be stored in another temporary register LMD. And finally, we consider another mux which

has 2 inputs, one is the output from this ALU output and the other one is from the LMD. If it

is an ALU instruction we are going to select this output and if it is a load instruction we are

going to select this input from the mux. And that will be sent to the register file, because last

stage is the write back stage, where we are going to write to the register file.

And this consists of the complete data path for implementing any instruction in the MIPS,

subset of the MIPS ISA. This entire setup is going to give you a non-pipeline implementation

of MIPS data path. And now we know that there are so many temporary registers and if I am

not going to perform the pipeline operation here, then effectively this is going to take

significant amount of time to perform each of these operations. And as a result in order to

improve the throughput, that is what we discussed as part of the last 4 modules, we have to go

for a pipeline design.

So, similarly, here this data path also can be implemented in a pipeline fashion by considering

the pipeline registers between each of these stages. So, if we see here, compared to the

previous one so, here the previous one we have all this temporary registers and these

temporary registers are replaced with pipeline registers. And we consider 4 pipeline registers

here.

The first pipeline register is between the instruction fetch and the decode stage. And that is

represented by IF by ID and second pipeline register is in between the decode and the execute

stage. So, it is represented by ID/EX. And the third pipeline register is between execute and

memory access EX/MEM. And finally, we have another pipeline register between memory

access and write back, MEM/Write Back. And all these pipeline registers are latches. So,

there is a clock associated with that and at the positive edge or negative edge of the clock

these latches are going to latch the inputs coming to them, from the previous stage.

And that will be latched in this registers and these contents will be considered as an input to

the next stage. And it will take some amount of time, that is the pipeline cycle time. So, that

the next stage. So, perform the operations and again at the end of, again when we apply the

next passage of the negate then the outcomes from this stage will be stored in the next

pipeline register and it will proceed further. Effectively so, when we have this pipeline

register to separate different stages then we can improve the overall throughput.

So, in other words, while one instruction is in the execute stage, we can perform the decode

operation on the next instruction. And similarly, we can fetch the next instruction to that. And

as a result at any point in time 5 instructions can be there in these 5 stages of the pipeline.

And as a result we can improve the overall throughput of the system. By the way so, this

shows the pipeline data path for the MIPS ISA. Now, you want to add the control path to this

so that we will make the full fledged pipeline processor design.

So, for that we consider a control unit and the control unit generates signals to different

hardware components in our data path so that these components will work properly and then

the compute the given required function efficiently. This control unit generates signal to the

execute stage, memory stage, write back stage. And in the execute stage actually it generates

signals as a select input to the muxes. For, example this first mux which is going to take 2

inputs, one is coming from this register file and other one is coming from this PC. So, now

this ALU source signal is going to select one of these two.

And based on the control signal value whatever is generated for this ALU source, one input

will be selected from this mux and given as input to the ALU. And similarly, this ALU source

also can be given as the source signal to the select signal to the another mux, which is going

to take 2 inputs, one from the register file the other one is from this immediate field. And

similarly, for this mux also we have the select signal coming from this ALU source. So, in

other words this control unit is generating set of ALU source signals and these signals will be

given as select inputs to all these muxes.

And based on the instruction type this ALU signal, ALU source signal, will be selected and

accordingly the mux is going to transfer the correct data to the ALU in the execute stage. And

also this control unit generates a signal that is ALU op signal which is based on the opcode

that is there in the instruction. And based on that this ALU control unit will act and

accordingly it will select a required functional unit in this ALU. Here ALU consists of

collection of functional units and based on the ALU op signal, ALU controller will generate

appropriate signal to select a required functional unit and that functional unit is going to

perform operation on the operands.

Also, this control unit generates a signal called a register destination and which is going to

select one of these 2 registers rt and rd, which are given as inputs to this mux. Because we

require this one of these 2 based on the type of instruction we are executing to finally, store

the contents in the register file. For that we are going to select the register destination and that

also again in the instruction when we decoded we know the register destination address and

based on that we are going to give appropriate signal here. And these are about the control

signals that are required in the execute stage.

And now we will move onto the memory the access the next stage. And in this the control

unit is going to generate a signal for memory read or memory write. If we are performing a

load instruction and if our instruction is load instruction then memory read signal will be

selected and memory write signal will be deselected. And if it is a store operation, memory

read is deselected and memory write is selected and because we already sent the address and

the data here.

If it is a store then it will be written to the appropriate location. Whereas, if it is a load

instruction then the address is given here and we go to the memory and read the data and the

data will be stored in the temporary register or pipeline register between the memory access

stage and the write back. We give a signal to the mux based on the condition of our branch.

And based on that our PC will be updated because we already discussed the branch outcome

and the branch test condition is completed only in the memory access stage in this particular

5 stage pipeline design.

So, as a result we require this control signal for this mux. So, in the write back stage we are

going to write the contents to the register file. So, here again if we are going to perform the

load operation, we are going to write the contents that are read from the memory to the

registers. So, as a result we have to this signal, memory to register, and as a result it is going

to select the data that is read from this data memory. And it will be passed through this bus

and then finally, it will be written to the register file.

And also we have to give this signal to the register file, indicating that we are performing

register write. And note that we are writing to the register file only in the write back stage.

So, as a result the write back signal or register write signal will be selected only in the last

stage. And this is about the pipeline implementation of a subset of MIPS ISA. And here, if we

see, we are actually performing the branch instruction in the fourth stage. So, in order to

minimize the penalty associated with the branches, we can move this branch computation

from the fourth stage to the second stage.

(Refer Slide Time: 22:35)

So, for that what we can do is, we can add extra hardware component that is in order in the

second stage itself. Previously we were using this ALU to compute the branch target address

and also the test condition for the branch, but now we are adding a separate hardware

component in the second stage. And so that our branch outcome and the branch target will be

completed in the second stage, but the trade-off is we are going to incur extra hardware

overhead associated with the adder, but the advantage is we are going to resolve the branches

quickly. And finally, in the case of operand forwarding we can forward from this particular

pipeline register back to the muxes.

So that if there is a match for the subsequent instruction which is requiring this particular

value then that value will be sent to this mux and as a result ALU will compute the

subsequent instruction without creating any stalls. And similarly, if we are going to forward

the load value to a subsequent store or ALU operation, then we can forward from this

pipeline register. And also this pipeline register can even forward the value that is computed

from an ALU operation also, because ALU operation whatever it computes that will be

written to the register only in the last stage.

In the meanwhile if there is any dependent instructions which requires this computed value it

can be forwarded either from this pipeline register or this pipeline register. But for the load

forwarding, we have to use only this forwarding pipeline register to forward the value. And

so with that we complete the pipelining unit. And so I am concluding this pipelining unit with

this.

Thank you

