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Handling Pipeline Hazards (Part 2)

So in the last module, we discussed a various pipeline hazards. And we also discussed that

among  all  the  pipeline  hazards,  the  control  hazards  are  going  to  create  significant

performance penalty. So,  as  a  result,  we need to  look at  the  techniques  to  minimize the

penalty associated with this control hazards. So, we know that the control hazards happen

because of the branch instructions, which alter the normal flow of execution of the program.
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So, simple technique one can use to deal with this control instructions is flushing the pipeline.

Here the processor will treat the branch instructions also like any other instruction. And as

soon as  the  target  address  is  computed  for  a  branch instruction  then  if  target  address  is

different from the, the next instruction of the branch instruction then we flush the pipeline.

Otherwise we will continue executing the instructions as it is.

So, this is like a simple technique which will not add any extra hardware overhead to the

processor, but it is going to create a significant penalty in terms of performance as long as, if

our applications have large number of branches and most of the times the branches are taken.



So, as a result, like this flushing the pipeline is, though it is a simple technique, it may not

been efficient from the performance point of view.

So, rather than considering this flushing the pipeline, so we can consider a different type of

other techniques, where we can take the help of both the hardware as well as the software. So,

our underline hardware can implement specific technique, but the software, that is a compiler,

can exploit this underline feature, and then reorganize the code to minimize the penalties

associated with this branches.

So, first technique is Predict Not Taken. So here our hardware, the processor always assumes

that the branches are not going to take place. So, once we have this predict not taken, so

automatically after the branch instruction the processor fetches the next instruction in the

sequence, in the program order. And we know that after the branches fetch and after some

time the branch target will be computed and if this particular branch instruction is going to

take place. That means it is going to get a new target address and at that point of time our

prediction is wrong and as a result we have to flush the pipeline.

But as long as if the branch is not going to take place, then we are going to get the benefit

from this particular technique. So, in other words the simple technique where the hardware

side it  always assumes all  the branches  are  not going to  take place.  Note that  here it  is

independent  of  a  branch  instruction  and  so  on.  Application  can  have  multiple  branch

instructions, but once our hardware or the processor is designed in such a way that it always

considers this predict not taken, then it assumes that all the branches are not going to take

place.

So as a result, for any branch instruction in the program it, the processor always going to start

fetching  the  next  instruction  after  this  branch,  and  the  control  will  alter  only  when our

prediction is wrong. And so as a result if the prediction is wrong then we flush the pipeline at

that point of time, and then start fetching the instruction from the target address. In other

words, in this  process, in this  Predict  Not Taken technique processor state should not be

changed until the branch outcome is definitely known.

So,  our compiler  can  exploit  this  behavior  or  compiler  can  know  that  the  processor  is

implementing all the branches in a Predict Not Taken fashion, and then it can reorganize the

code,  so  that  it  favors  this  predict  not  taken  scenario.  If  the  applications  have  branch



instructions, which are not going to take place most of the times then this technique will be

efficient from the performance point of view.

And this next technique is Predict Taken. For any branch instructions, the processor is going

to assume that the branch is going to take place and as a result, so in order to execute the

instructions  from the  target  address,  first  of  all  we have  to  know the  target  address.  So

effectively, once a branch instruction is fetched and after decoding we have to compute the

target address and only then we can start fetching the instructions from the target address.

So for example, the five stage pipeline whatever we considered in the previous module. So,

we cannot  exploit  any benefit  from this  Predict  Taken technique  and this  Predict  Taken

technique will be helpful only when the target address is known before the actual branch

outcome is released. So, as a result among these two, Predict Not Taken and Predict Taken,

the Predict Not Taken will be beneficial for improving the performance using our compiler

support.

And finally, we can also consider another technique called as the delayed branch. So, here

what  we  can  do  is,  we  insert  delay  slots  between  the  branch  instruction  and  the  target

instruction or the next instruction following the branch. Effectively, we insert few delay slots

and these delay slots will be filled with useful instructions and again, since we are going to

take the help of compiler and compiler going to put useful instructions in these delay slots.

And we can consider any number of delay slots after the branch instruction, but to make the

design simple, we can consider one delay slot after the branch instruction. So, this delay slot

will immediately follow the branch instruction. So, as a result, once we have this Delayed

Branch Technique, our sequence of  instructions in our code will become like first branch

instruction, then the sequential successor this is a delay slot and then the branch target if

taken.

So once we have this delay slot and if we keep useful instruction in this delay slot, so that

while the processor is busy executing these useful instruction that is there in the delay slot,

we compute the target address for the branch, if the branch is taken. And by the next cycle,

we already know the target address so if the branch is taken, we flush or we discard the

whatever instruction that was there in the delay slot, and then we continue with the target

address.  And if  the branch is  not taken and if  our  delay slot  is  actually  having the next



instruction to the branch instruction, then we will, we do not have to do anything and we just

continue executing the instructions in the program order.

Effectively so we can  minimize the  penalty associated  with  the  branches  by using  these

Predict  Not  Taken,  Predict  Taken  and  Delay  Branch  mechanisms.  And  for  these  three

techniques, we take the help of compiler and compiler reorganizes the code based on the

technique what we implement. Once we have the support of hardware and the software and

we can minimize the penalties associated with the branches, and as a result we can improve

the overall performance. And note that in most of the benchmark applications the branch

instructions contribute to 22 to 25 percent of the instructions.  And in a  deeper  pipelined

processor, if we are not going to take care of these branches then we will get a significant

performance penalty.

As a result, we need to look at efficient branch penalty minimization techniques to improve

the overall performance. By the way, so in the delayed branch technique, we are not supposed

to insert a branch instruction in the delay slot. The main reason here is, because if we keep

another branch instruction in the delay slot and we do not know what is the outcome of the

branch instruction? Whether the branch is going to take place or not take place. As a result

this is going to complicate the overall things and that is the reason why typically, we disallow

keeping a branch instruction in the delay slot. So, other than the branch instruction we can

keep any instruction in the delay slot. Now, we will discuss the Predict Not Taken with an

example.
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So, consider a scenario where we have a non-taken branch instruction,  we just following

through the five stage pipeline instruction fetch, instruction decode, execute, memory access

and the write  back.  And because this  is  Predict  Not  Taken technique,  so that  means our

underline  processor  is  implementing  the  Predict  Not  Taken.  That  means  for  any  branch

instruction in the program the processor always assumes that the branch is not going to take

place.

And then it can start fetching the instructions immediately after the branch instruction. So, as

a  result,  after  the  branch  instruction  is  issued  at  time  t.  In  time  t+1  we  fetch  the  next

instruction following the branch instruction that is instruction i+1. And that will be in the

instruction fetch stage, while the branch instruction is in the instruction decode. And then at

the end of the instruction decode we know that the branch is not taken, and as a result we

continue with instruction i+2, i+3, i+4 and so on.

So, as a result, so there is no problem as long as if the branch is not taken and our underline

processor is assuming all the branches are not going to take place. So effectively there is no

performance penalty and we get very good performance with this code. But consider another

scenario; still here also our processor is always assuming that the branches are not going to

take  place.  And but  unfortunately  the  branch instruction  is  taken,  as  a  result  the  branch

instruction has to go to a different target address rather than the next address in the sequence.



But because we issued branch instruction at time t, while the branch instruction is in the ID

stage we fetch instruction, which is following the branch instruction in the program order that

is instruction i+1. But at the end of ID stage for the branch instruction we came to know that

the branch is taken. So, as a result, we already computed the target address for this branch

instruction. Now we have to flush the pipeline, which is currently holding the instruction i+1.

In other words, we have to treat the instruction i+1 as no-op instruction and we re-fetch the

instructions starting from the target address specified by our branch instruction the ID stage.

As a result in the while the branch instruction in the execute stage, we are fetching a new

instructions specified by the branch target address, and that is in the instruction fetch stage.

And we will  continue with the subsequent  instructions  with respect  to  this  branch target

address.

In other words, when we are considering always Predict Not Taken technique, and if  the

branches are taken then we are going to incur a penalty. And that penalty is, depends on what

time the branch instruction issued, and at what time the branch outcome is realized and at

what time the branch target address is computed. So, as a result we have to realize the target

address and we have to realize the outcome of the branch as quickly as possible, with respect

to the time at which the branch is issued so that the penalty can be minimized. Now we will

consider another example which illustrates the concept of delayed branch technique. In this

delayed branch technique,
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So, if the branch is not taken, let us assume that the branch instruction is issued at time t and

this branch is not taken. So, when the branch instruction is in the ID stage, we are fetching an

instruction, which is there in the delayed slot. We assume that the delay slot is actually having

the instruction,  which is following the branch instruction in the sequence.  So, effectively

delay slot is having instruction i+1 and we fetch that instruction and we will continue, but at

the end of the ID stage for the branch instruction, we came to know that the branch is not

taken.

So, as a result we do not have to alter the program order and we just continue fetching the

subsequent instructions and then these instructions will go through the  remaining  pipeline

stages. So, there would not be any stalls and as a result no performance penalty we get. Now,

consider another scenario, if the branch instruction is taken, so in this case. So, what we have

done is in our the delay slot, we kept instruction which is following the branch instruction,

and at the end of the ID stage of the branch instruction we came to know that the branch is

taken.

So, as a result whatever the instructions we fetch, that is stored in the delay slot will be void

now and then we can continue with the target address instruction. But, remember if our delay

slot is actually going to store some instruction, which is independent of the branch condition

and also is an useful instruction in the program, then we can complete the execution of that

useful instruction without discarding it. As a result we do not have to waste this one cycle of

the pipeline, and as a result we can improve the performance.

So,  the  catch  is  in  the  delayed  branch  technique  if  we  want  to  get  better  performance

improvement, then we have to fill the delay slot with some useful instructions. And again

because we are going to take the help of compiler to fill the slots, these delay slots then if the

compiler can identify independent instructions and those are useful then we can eliminate

even the wastage of this one pipeline cycle  stage and we will get significant performance

improvement.

So, in other words among all the three techniques as long as if the compiler can find useful

instructions from the program, then the delayed branch technique will improve the overall

performance, compared to the other two techniques, Predict Not Taken and Predict Taken.

Now as mentioned earlier, if we can keep useful instruction in the delay slot, then we can



minimize the penalties associated with the control hazards significantly, but how do we select

useful instruction? So we will consider three scenarios here the first scenario is -
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We have an add instruction, which is going to read to register contents R2 and R3, and then

perform the add operation and store the result in R1 and following this add instruction, we

have a compare, branch instruction which is going to compare R2 content with 0. And if

branch is equal to 0 then we are going to go to this target address, otherwise we are going to

execute the delay slot instruction. So, how the compiler can reorganize this code such that the

delay slot is filled with useful instructions.

So, if we see this code, we know that this ADD instruction is independent of this branch

instruction, because in both the instructions R2 is used but R2 source operant in add operation

and whereas the branch instruction is using R2 for comparing. So effectively, even if we

move  this  ADD  instruction  to  the  delay  slot,  we  are  not  going  to  get  any  functional

incorrectness. So, as a result if we can rearrange the code like this, where our delay slot is

actually having this ADD instruction.

Now we can see if  R2 is equal to 0 if the condition is true, but that condition we know

whether the condition branch is going to take place or not only in the second stage of the

execution. And by the time we already fetch the instruction that is there in the delay slot, but

now the delay slot is having useful instruction because we are supposed to perform this add



operation according to our original code. So as a result our delay slot is not wasted and it is

actually performing useful computation.

So, even if the branch is taken, here we are not wasting the delay slot and we are performing

useful computation. And after the once cycle delay, then we will know the target address and

then we start fetching the instruction form the target address. And the other case for example,

if the branch is not taken here, in that case so we first fetch the ADD instruction that is there

in the delay slot and after that we proceed with the remaining instructions after this branch

instruction. In both the cases we are not going to lose any performance, and as a result if we

can  find  useful  instruction  to  keep  in  the  delay  slot  we  are  going  to  gain  significant

performance improvement.

But  again  not  always  we  will  have  that  luxury  of  finding  independent  instructions.  So

compiler may not find useful instructions always, useful as well as independent instructions.

So, if we cannot find useful independent instructions, then we have go to the next option,

where we will consider another. Example here we have a subtract operation which performs a

subtract on contents of R5 and R6 and store the result into R4. And then we will perform an

add operation which performs add of contents of R2 and R3 and store the result in R1.

And there is a branch instruction which is going to compare whether R1 is equal to 0 or not.

If it is 0 then we are going back to this subtract operation and we will repeat. And if the

condition is false, then we will just follow the instructions that are there after this branch

instruction. Now we have a delay slot after this branch instruction and we have to fill this

delay slot with some useful instruction. So which instruction we can keep it here.

We can store this subtract operation in the delay slot, and if the condition is true that will be

known only in the ID stage of this branch instruction. And by the time we already fetch the

instruction that is there in the delay slot, which is nothing but the subtract instruction and

after  fetching this  if  we know that  the branch is  taken then we have to  go to  the target

address, but now the previously the target address was pointing to the subtract instruction in

the original code. But now we pointed this target address to the next instruction following the

subtract operation. And we already executed the subtract operation.

So, effectively the functionality wise both are doing the same thing, we are not wasting the

delay slot when the branch is taken, but now consider a scenario where the branch is not

taken. So, according to the original code,  if  the branch is  not taken, we are supposed to



execute instruction that  is  following this  branch instruction.  And we are not  supposed to

execute this subtract operation, but after the code is transformed to this form then we know

that if  the branch is not taken. Even then the immediate slot  associated with this branch

instruction,  we are fetching this  subtract  instruction.  And so this  is  wasting one pipeline

cycle.

So, effectively if the branch is not taken in this scenario, we are going to waste one pipeline

cycle, but if the branch is taken then we are actually not wasting any cycles and then getting

the useful computation. So, compared to the first technique, this is not going to give you that

much performance improvement, but this will give you performance improvement as long as

branches are going to take place. Effectively, if most of our branches are going to take place

with high probability, then we can implement this type of technique in our code.

Consider an example here in the third case, we have an ADD instruction, which is performing

add of R2 and R3 and store the result  in R1. And there is a branch instruction which is

comparing  R1  content  with  0,  if  it  is  true  then  we  are  going  to  execute  the  subtract

instruction, otherwise we are going to execute the OR instruction. And now see here this

branch  instruction  is  using  the  operand,  which  is  the  destination  operant  for  the  add

instruction.

And similarly, even in the previous case also, here the branch instruction is going to take the

operand, which is the destination operand for add instruction. Effectively, in both the cases

our branch instruction is dependent on immediate previous instruction. So, as a result, we

cannot keep that previous instruction in the delay slot. And now in this third example, so what

we can do is, we can keep the OR instruction in the delay slot. So, this example will be

helpful for scenarios, where most of the time the branches are not going to take place. If the

branches are not going to take place with the high probability, we can always fill the delay

slot with the instruction which is following the branch instruction.

Now you can see clearly, if this branch is going to be false, that means it is not going to take

place then the delay slot is actually having the instruction, which is following the else path of

this condition. So, as a result we are performing the useful computation. And if the branch is

going to take place that means, if it is going to take the true path then we are supposed to

execute this instruction, but we are executing the OR instruction then we are going to get a

performance penalty, a performance penalty of one cycle. So effectively this third technique



will be helpful for the cases where branches are not going to take place with high probability.

And the second technique is helpful in the cases where the branches are going to take place

with high probability.

And the first  case is  actually  helpful  where if  the compiler  can identify, can find useful

independent instructions in the program. So, effectively with the help of the underlying, the

implementation for a handling the branches, the software or the compiler can re-arrange its

code, the rearrange the program code in such a way that, it can fill the delay slot with useful

instructions and then minimize the penalty associated with the branches.

And as I mentioned earlier, because the branch penalty is significant and it is critical for

improving the overall performance so, we have to minimize the branch penalties, and once

we do that then we can get a significant performance improvement. And we already discussed

in the previous module that, the speed at that we achieve with the pipeline design is

                     SpeedupPipeline=
Pipeline Depth

1+( Branch frequency∗Branch penalty )

assuming that we do not have any hazards associated with the data and the structural hazards.

And in that scenario, if we are going to minimize the branch penalty, we can get a significant

performance improvement with the pipeline as compared to a non pipeline design.

And so fore we discussed the techniques which are static in nature, that means when the

processor is designed in such a way that it always can assume that all the branches are not

going to take place or it can always assume that all branches are going to take place, or it can

do nothing with the branches, or it can insert a delay slot and the compiler can insert a delay

slot, useful instruction in the delay slot and so on. But here in all these techniques, we are not

worried about the outcome of the branch, we are just treating all the branches equal, but in

reality that is not a case.

So, in reality what happens is, same branch instruction when it is occurring several times in

the program execution can behave differently. One time it can take the branch next time it

may not take the branch and so on. So, as a result branch outcome can be one instance can be

true and in the other case it may be false. So, once you have that then you have to exploit that

behavior and then come out with efficient mechanisms to deal with these branch penalties.



In other words, these static techniques may not be helpful always, as we change the input to

the program then branch outcomes can change significantly, and as a result we need to come

up with dynamic mechanisms, which will adopt based on the run time conditions. And for

that there are several techniques proposed in the literature and all these belong to the class of

dynamic branch predictions, we have to predict the outcome of a branch at run time. And for

that we can take the help of hardware and we provide extra hardware components, one for

predicting the outcome of the branch and one for storing the target address.

Effectively, in the dynamic branch prediction technique, we are going to exploit the outcomes

of  the  branches,  which  happen at  different  times  in  the  program execution  and  use  this

previous outcome history, and predict the next outcome for the branch and accordingly we

just fetch the instruction either from the target address, or from the next instruction following

the branch.
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So,  consider  sequence  of  branch  outcomes  for  a  particular  branch  instruction.  Here  T

indicates branch is taken, and N indicates branch is not taken. So, lets us assume that there is

a branch instruction which happened in the past 11 times, and then the outcomes for each of

the times is like a first time it is taken, the next it is not taken, next time taken and so on.

Once you have this history and if we can remember this history and then use this history to

predict  the next outcome, if  the same branch is going to happen next time. That is  what

dynamic branch predictors are going to do.



Now, how much history we have to remember? Whether we take the decision based on the

immediate past decision, or the immediate past outcome, or are we going to consider the last

few outcomes and use that information? So, if you are going to remember large history of

outcomes  for  given  specific  branch  instruction,  then  we  are  going  to  incur  significant

hardware overhead. And because this  branch predictor logic is  going to  be placed in the

processor, so it is going to occupy chip area and as a result so it is not good idea to increase

the overall overhead of the chip.

So, as a result we have to come up with efficient branch predictors, when I say efficient, it

has to provide with high accuracy, whether the branch is going to take place or not take place

and at the same time it should consume significant area overhead. Now, consider a simple

case, let us assume that we are going to remember only the last outcome of the branch, and

based on that we are going to take a decision. So that is nothing but predict the next outcome

of the branch based on its present outcome. In this particular scenario, if we use this logic.

For example, when we are here, previous the present outcome is not taken and this next time

again the same branch is going to come, based on this outcome if we are going to say next

time also the branch is not going to take place. But actually the branch is taken so effectively

there is a misprediction, and after that again the branch is not going to place, again there is a

misprediction and so on. So, effectively, this just based on the present outcome if you are

going to predict the next outcome, we may not get high accuracy branch predictor. And this

actually is called as a one bit branch predictor and the state diagram for this one bit branch

predictor will be something like this.

So, it has two states, the Predict Not Taken which is represented with 0 and Predict Taken

which is represented with 1. So, initially assume that we are in the 0 state and so because this

saying predict not taken, so we assume that the branch is not going to take place. And then we

will fetch the instruction accordingly, but after the branch outcome is realized if it is actually

not taken, then we will be in the same state and without changing the state. But if the branch

outcome says that the branch is taken, so the taken is represented with dotted arrow. So, there

is a state change from predict not taken to predict taken the state 1.

And after that next time if the same branch happens, we will look at the state diagram and its

state is 1. So, then we will assume that the branch is going to take place and we will fetch

instructions from the predicted target address, and if the prediction is wrong, then we are



again going back to this state and so on. Effectively we will oscillate between predict not

taken and predict taken if you are going to consider 1 bit history, and if the branch outcome is

something like this. So, effectively this 1 bit branch predictor is not providing high accuracy

and as a result we cannot use this.

So, in order to come up with a reasonable accuracy branch predictor we can actually go for

the 2 bit branch predictor, where we will consider four states and the state change happens

only when we predict wrongly or we predict correctly, two times consecutively then only we

change the state. So for example, here we can see our four states are 00, 01, 11 and 10.

Assume that we are in 00 state and 00 indicates that predict not taken, so we will be assuming

that the branch is not going to take place and we will fetch the instruction accordingly.

But if the branch is taken actually after we perform the branch computation, then we will go

to predict not taken with the state 01 using this dotted arrow. And still in this 01 state also

because it says predict is not taken, next time also if the same branch occurs then we are

going to assume that the branch is not going to take place, and we proceed further. But again

if here also, for example, the branch is taken, that means we actually mispredicted two times

then we will go to state where, the value is 11 and it is treated as predict taken.

So, effectively from this state predict not taken if we have two times misprediction happen,

then we will go to predict taken. And in this, we assume that the branch is going to take place

and the next time, when the branch instruction comes then using this state we treat the branch

is going to place, and we fetch the instruction from the predicted target address and proceed

further. For example, if the next time the branch is not taken then we will move from this

state to predict taken, but state number is 10 using this, the bold, the arrow not taken, and we

will continue in that.

Next, again if the next time the same branch happens and if it is not taken, then only we will

go  to  this  predict  not  taken.  Effectively  we  can  see  here  from  this  state  with  a  two

mispredictions, we are going to change the decision. Similarly, from this when there are two

mispredictions then we are going to the other state. So state change happens, state change

means  here  prediction  decision  changes,  when  there  are  two  mispredictions  happen

consecutively for our given specific branch instruction.

And we can actually come up with n bit branch predictor, where rather than considering two

bit we can have n bits, so that we can get high accuracy. But experimental results show that,



the two bit predictor gives a reasonable accuracy, and the extra hardware overhead we incur

because of this n bit predictor, where n is greater than 2 is not good compared to the benefits

we get in terms of accuracy. So, as a result  we can,  we can go with the two bit  branch

predictor in our processor designs.

And to implement this branch predictors, so we can either associate a specific cache, a small

cache type of thing in the processor design, where this cache will store the branch history

information, branch history target. So, it remembers the previous outcomes of the branches

and next time when the same branch happens we index into the cache and then based on the

outcome we can take the decision. It remembers the state of the outcome, or we can also

implement this branch predictions using extra bits associated with the cache block, because

the branch instruction is part of a cache block in the instruction cache, and that entire block

will be associated with the state of this the state diagram. And using that state we can identify,

whether we can predict whether the branch is going to take place or not and accordingly we

can proceed further.

So, effectively the branch history table can be implemented either by using a special cache, or

by appending a set of bits to the cache block which is holding the branch instruction. In the

case of special cache, we are going to store this entire history information and whenever there

is a new branch instruction comes we index into the cache and then we will get the predicted

outcome and based on that we will proceed further.

This is going to tell you about the whether the branch is going to take place or not, but once a

branch is predicted to be taken, we have to know the target address. For that we also associate

an extra table in our processor that is called as a branch target address buffer. So, BTB branch

target buffer, which actually stores the predicted target address. Previously if the when the

same branch occurred, what was the target address it took? And that address will be stored in

this BTB, and next time if the same branch is going to take place, then we index into the BTB

and use that predicted address and fetch the instruction from the predicted address.

So,  effectively  in  order  to  implement  this  dynamic branch prediction,  we need hardware

components associated with the prediction logic, as well as the branch target buffer which

stores  the  target  addresses.  So,  with  that,  so,  I  am concluding this  module  and the  next

module, we are going to discuss simple pipeline implementation of MIPS ISA.

Thank you


