
Computer Architecture
Prof. Madhu Mutyam

Department of Computer Science And Engineering
Indian Institute of Technology, Madras

Module – 05
Lecture – 14

Fundamentals of Pipelining (Part 2)

So, in the last module, we introduced the pipelining concept and explained the pipelining

with example, by considering floating point multiplication. Now, in this module we are going

to look at instruction pipelining. So, in ideal scenario, we know that, when we divide a

computation into k stages, we get k fold improvement in the throughput, but in reality that is

not what we can get. There are several reasons for that. We will illustrate, why we are not

getting k fold increase in the case stage pipeline in reality, by using different examples.

(Refer Slide Time: 36:48)

Now, in an ideal scenario, the pipelining assumes that we divide our computations in uniform

sub-computations. In other words, when we consider a computation and in ideal scenario we

assume that this computation can be divided into equal parts, there can be like k stages or n

stages or whatever, but each of this sub stage will be of or taking the same amount of time as

that of other stages, but in reality that is not what we can get.

For example, in the last module, we considered the floating point multiplier unit and we

know that when we divided this floating point multiplication computation into three stages,

the first stage is taking 125ns, second stage is taking 150ns and third stage is taking 125ns.

So effectively, so, not always it is possible to divide our computations in to equal sub

computations. So, as a result, we lose a performance because of these non-uniform sub

computations. We know that, the cycle time of pipelining is determined by the stage that is

taking maximum amount of time among all. So, in the floating point multiplication pipelining

design, we know that second stage is the one which determines the overall, the pipeline stage

cycle time.

So, because it is taking 150ns compared to the other two stages, those are taking 125ns. Now,

effectively first and the third stage are actually loosing 25ns of the time and this is called as

internal fragmentation. When we have a pipeline design where each stage is taking different

amounts of time, now we will get, we will waste some amount of time because of this non-

uniform computations and that wastage is called as “Internal Fragmentation”.

This is nothing but the time wasted within a pipeline stage. So, this mainly happens because

our sub computations are not always of equal length in time. And this is one of the reasons

why we cannot get a k fold increase when we divide a computation in k pipeline stages. And

the second reason, why we can k fold increase is non-identical computations. In ideal

scenario, we consider that all computations are identical. We assume that, when we are

performing computations on the pipeline design, we always get the same type of

computations, but that assumption is not true in reality.

And consider an example here, we have three instructions here, one is an add instruction, the

second one is a store instruction and third one is branch equal, so branch instruction. So, in

this particular example our add is going to take some number of pipeline stages, whereas

store is going to take different number of pipeline stages. And similarly, branch instruction, it

may take two pipeline stages. So, we are going to discuss the instruction pipelining in a short

while, but in that example we can clearly see branch is going to take two cycle latency

whereas, store is going to take four cycle latency and add is going to take five cycle latency,

in a five stage pipelining.

In other words, add is using all the pipeline stages, store is using four pipeline stages and one

pipeline stage is wasted and branch instruction is taking only two pipeline stages for

performing the branch. And as a result, now we can clearly see that different instructions may

take different pipeline stages or may use different pipeline stages and some pipeline stages

may be underutilized. And that is called as an “External Fragmentation”. This is nothing but

some stages are not utilized because of type of instructions we are performing and if the

whole stage is not used than that is called as an external fragmentation.

Whereas, in the internal fragmentation case, some amount of time within a pipeline stage is

wasted. So, because of this non identical computations also, sometimes we cannot get a k fold

increase using k stage pipeline. And the last reason for not getting k fold increase or not

getting a k fold throughput improvement using a k stage pipeline is independent

computations. Not always all the computations are independent. If all the computations are

independent we can execute all this computations without any problem.

So, there would not be any pipeline stalls and the overall performance can be improved, but

in reality, instructions which are executed one after other may be dependent on the previous

instructions. For example, consider a scenario, where we have an add instruction, subtract

instructions and a multiply instruction. So, we know that, subtract instruction requires the

output generated by an add instruction. Anyway, in this particular example, we consider three

operands and the first operand always represents the output or the destination and the last two

represent the source.

So, when we perform add operation, we read the data from two resistors R2 and R3 and the

added value is stored onto R1. And when we want to perform subtract operation. So, subtract

requires R1 as an input. So, effectively sub cannot be executed until add is completed, or add

is writing the data to R1 till the time the sub operation has to be stalled. So, because of the

dependency, sometimes some of the pipeline stages may not be proceeded and we may get

pipeline stalls.

Even in this example, multiply also depends on sub to be performed. Because multiply takes

an input R4 and which is produced by a subtract operation. Effectively all these three

operations are dependent. Second operation depends on the first and the third is dependent on

the second. So, as a result there will be pipeline stalls because of these pipeline stalls, our

overall throughput may not be equal to the ideal scenario. So, effectively, because of these

different scenarios, in reality, we may not get k fold increase with a k stage pipeline. So,

having discussed these three different categories where these three different categories which

limit our overall performance improvement we get with the pipelining.

Now, we will see how the ISA has an impact on the pipeline performance. So, in fact the

instruction set architecture has a significant impact on the overall performance improvement

that we get through pipelining. Again we consider those three categories and then we will see

how ISA has an impact.

(Refer Slide Time: 08:38)

So, first we start with uniform sub computations. According to uniform sub computations, our

overall computation can be divided into sub computations and each sub computation takes

the same amount of time as that of other sub computation. But if we use too many number of

addressing modes then we may get significant performance penalty or we may not achieve

very good performance through the pipelining. The reason is if you are using an memory

addressing mode in our ALU operations and if one operand is defined based on memory

addressing mode and the other operand is reading from a register and if you want to perform

an ALU operations on this and we know that memory access latency is much higher

compared to accessing a register file.

So, as a result, our overall time to read values, to read these two operands will be significant.

And as a result this instruction is going to take much more time compared to any other

instruction which reads operands from registers alone. So, and also we cannot prevent a

memory access because the memory is the component which stores all the values and so on.

We have to read the values from the memory, but we limit the memory access by using only

load and store instructions.

And only whenever we need memory data stored in the memory to be read, we will use these

load and store instructions. And we will perform all ALU operations on registers. If you do

that then we can minimize the impact of these non-uniform sub computations. And also,

because going to the memory always, is going to take significant amount of time, we have to

consider faster cache memory between the processor and the memory. And that also improves

our overall the performance by reducing the memory access time.

So, effectively when we want to design an ISA, we have to limit the number of memory

addressing modes to be used in our ISA. And we need to consider multiple levels of faster

cache memory, once we do this then, once we do these things then, effectively we can

minimize our non-uniform sub computations. And the second one is identical computations.

So, in order to come up with these identical computations.

So, we need to come up with less complex instructions in our ISA and also these instructions

should not be significantly divergent. So, that means like the diversity among these different

instructions types should be minimized. Once we minimize diversity among different

instruction types and also once we minimize the complexity of an instruction. So, all the

instructions may take similar amount of time.

So, as a result, we may get identical computations among the instructions. And best example

for such type of instructions are considered in RISC architecture, Reduced Instruction Set

Computer Architecture, which actually provides a simpler instructions and all the ALU

operations are performed on register operands and all the memory operations are performed

through load and store instructions.

And because of registers are involved in performing ALU operations, all the ALU operations

are going to take similar amount of time. That way like, we can minimize these non identical

computations in our execution and as a result we can improve the performance through

pipelining. And finally independent computations.

So, in order to know whether two instructions are dependent or independent, if we use

register addressing modes we can easily identify the dependency among outputs of the

previous instructions and the inputs of the next instructions. Because all we have to do is, we

have to look at these register operand and then do the dependency check easily.

But if you are going to use memory addressing modes for operands in the instructions then

dependency check among these operands, which are actually specified using memory

addressing mode will become very complex. And so as a result, it will be very difficult to

perform this dependency check and unless you perform dependency check, we cannot

proceed with the subsequent instructions. So, we have to stall the subsequent instructions

until the previous instructions completed and that is going to degrade performance

significantly. And so as a result, in order to exploit these independent computations to

improve our performance through pipelining, we need to minimize memory addressing

modes in our ISA.

And as I mentioned earlier, it is easy to check dependency among registers. So, as a result, we

need to use register addressing modes for our ALU operands. And this is also another reason

why RISC is actually using all ALU operations using register addressing modes. So,

effectively, when we want to design our ISA, we need to consider these, all these things, into

consideration. So that, when we go for pipelining of instructions, we can improve the

performance. So, now we will consider the pipelining of instruction execution, by

considering RISC instruction set. So, in the lifetime of an instruction execution there are

several stages involved.

(Refer Slide Time: 14:32)

The first one is, we have to fetch the instruction because we know that, our instructions are

stored in an instruction cache and the data is stored in data cache. We can consider the split

cache mechanism for not having interference between this data access and the instruction

access. And typically instruction cache will show significant special locality. And so as a

result we generally separate these caches into two separate things and this is called as a split

cache mechanism.

So, our instructions are stored in the instruction cache and the PC is the program counter

which specifies the next instruction to be executed. So, whenever we want to start executing

an instruction, we first consult the PC and PC is going to specify an address and based on the

address stored in the PC, we will go to the instruction cache and fetch the instruction from the

cache memory or the main memory if you do not have the cache memory at all.

Once we fetch, once while we are fetching the instruction from the instruction cache, we

update PC and PC is incremented by instruction width. Let us say, if each instruction is taking

32 bits then PC is incremented by 4 bytes. So, that it is now pointing to next instruction in the

sequence so, because, this updating of PC and accessing instructions from the instruction

cache can be performed simultaneously, so that, we will do these operations parallely.

So, as a result at the end of an instruction fetch cycle, we have an instruction, which is

represented in terms of stream of bits and this stream of bits are stored in the register called as

instruction register also represented as IR. So, once instruction is stored in an instruction

register, now we need to see, what type of instruction this particular the instruction whatever

we fetched just now because we know that, when we fetch instruction from an instruction

cache, it consists of stream of bits.

Unless we decode this stream of bits, we cannot say what their duty or what is the role of

particular instruction. Whether this instruction is going to perform read operation, write

operation or an ALU operation or something else. So, that means to know the purpose of that

instruction we have to decode. And so we will give the contents of this IR instruction

registers to the instruction decoder and the instruction decoder is going to decode this

instruction by using different mechanisms.

Typically, instruction is represented in terms of set of fields and the first field is represented

as the opcode, the next sets of fields are going to specify the operands. So, we give

corresponding field to decoder and the decoder is going to specify what type of instruction

this particular bit of streams, bit stream is representing. And once we know that we will

perform the operation. But also this instruction represents the operands and operands also

represented by using bit stream.

And so once we decode these operands then we know, what is the addressing mode these

operands are represented by and based on that either we will go to register file to read the

instructions or we may have to go to the memory. But to go to the memory then we will

perform the other operation that is called as the Execute Stage. And also in our simple five

stage pipeline, we consider that if the instruction is a branch instruction we also perform the

branch condition check in the second stage itself. That means this the second stage ID,

instruction decode stage, not only decodes the instructions and if it is a branch instruction we

also perform branch condition check.

So, as a result by the end of a second stage of the five stage pipeline, our branch instruction

completes its execution. And also we will compute the branch target address in this particular

stage. Remember when we have an ALU operation in the ID stage itself, instruction decode

stage itself, we will perform the register read. So, effectively our ID stage consists of

decoding an instruction, to know what is the type of instruction and also we know the register

addresses from that instruction.

And once we have the register addresses we go to the register file and read the register

contents from the specified locations in the register file. That is called as a register fetch

cycle. So, register read also will be performed in the id stage. And the next stage, that is

called as an execute stage where we actually perform actual execution of an instruction. If it

is an ALU operation because this is a RISC instruction set architecture. So, we will perform

the ALU operations on register contents.

So, already register contents are read in the previous stage that is ID stage. And we give these

register contents or register operands to functional unit and we perform the actual operation.

And if it is a register immediate ALU instruction so, one operand is already available in the

instruction itself and the other operand is available from the register file which is read in

previous stage and we can perform ALU operation. And to know what functional unit to be

accessed, we already decoded the opcode type in the ID stage and we used that.

And give the signal to appropriate functional unit and that functional unit is going to perform

the ALU operations. And now if we are going to consider memory operations such as load

and store. So, load or store is specified in the previous stage by using the ID. ID stage, which

is specifying what type of memory operations we are going to perform.

And if it is a memory operation, load or store, now we need to compute the effective address

because in our instructions the memory address may not be specified directly. It will be

specified as the base plus offset. So, we need to perform the add of this base address and the

offset. So, as a result we use an adder to perform this addition operation and as a part of this

Execute stage, to deal with the load or store instruction we are going to compute the effective

address. Once we have an effective address the next stage we are going to the memory and

then perform the actual operation. And that is called as memory access cycle.

(Refer Slide Time: 21:40)

In the case of a load instruction, we go to the memory and access appropriate location

specified by our effective address and read the content. Whereas, in case of store instruction.

So, we go to the memory and write the contents whatever is specified in our instruction to the

effective address location in the memory. So, remember in the case of memory access cycle

when we are performing the load operation, we just read the data from the memory.

And we will write to the destination register only in the next stage, that is called as write-back

cycle. And this write-back cycle will perform the actual write to the register for both the ALU

operations as well as the load instructions. And the ALU operation, we know that the

execution of ALU operation is performed in execute stage, but the actual writing to the

register will be in write-back stage. So, effectively in this five stage instruction pipeline for

RISC instruction set architecture, branch instruction takes two cycles, store instruction takes

four cycles and all other instruction take five cycles, for our simple five stage pipeline of

RISC instruction set. Having discussed this, the pipelining of the instruction execution, now

we will see how each of these stages will follow.

(Refer Slide Time: 23:16)

So, when an instruction I is issued, the cycle one it will be in the instruction fetch stage. The

cycle two it will go to the ID stage. So, that now instruction fetch stage is free. So, we can

issue the next instruction to this, the instruction fetch stage because we know that instruction

fetch performs independent operations as compared to instruction decode which performs

independent computations as compared to execute stage, which performs independent

computations with respect to memory stage and all these four stages perform independent

computations with respect to write back.

Effectively, all these five pipeline stages perform independent computations with respect to

each other. As a result, when we have one instruction in one pipeline stage we can send

another instruction to a different pipeline stage. And also we know that ID stage will be

followed only after IF stage is completed. And similarly, execute stage will continue

processing something which is already processed by ID stage.

And similarly, memory is going to process something which is processed by execute stage

and other things. So, effectively when an instruction I is issued, in the cycle one, it will be in

IF stage the cycle two it will go to ID stage. So, that IF stage is free and in this IF stage now

we issue the next instruction. So, effectively now in the second stage, in the second

instruction I+1 instruction will be in the IF stage in the cycle two whereas, instruction I is

there in the ID stage in the cycle two.

When we are in the cycle three the first instruction, instruction I is in the execute stage.

Instruction I+1 is in the ID stage and instruction I+2 is in the instruction fetch stage. And in

the fourth cycle, our first instruction is the memory stage, second instruction is in the execute

stage, third instruction is in the ID stage and the fourth instruction is in the IF stage. And this

will continue.

And in an ideal state scenario, so all these instructions if they are independent and all these

pipeline stages take the same amount of time, so there would not be any bubbles in our

pipeline. So, effectively after first five cycles, our first instruction is completed and after that

every cycle, every pipeline cycle, will compute one instruction. So, effectively our

throughput will be one instruction per pipeline stage or pipeline cycle time.

So, as a result, with five stage pipeline we can get, an in an ideal scenario, a 5x throughput

improvement as compared to non-pipeline design. And for this pipelining if we see the data

path associated with our processor, it consists of several components. We know that

instruction fetch requires the data to be read or instruction to be read from instruction

memory. That is what this IM, IM is the hardware component, instruction memory, which

supplies the instruction for our address specified in, the PC, program counter. So, for

instruction fetch we are going to use instruction memory component.

And after we fetch, in the next stage, we are going to go for decoding the instruction and also

register read. Effectively to perform a register read, we are going to read operands from

register file. Effectively we are going to use register file component in the second stage.

While we are performing register read from a register file our instruction memory is free. So,

we can perform read operations from instruction memory. As a result, we can see in CC2, that

is the clock cycle two, we can perform operations on these two components simultaneously.

One is reading from register file and the other one is reading from instruction memory. And

once we read operands from the register file and also once we identified that the operation is

an ALU operation, the cycle three ALU operation can be performed simultaneously with a

register read as well as the memory read. So, effectively in cycle three all these three

components can be used for performing different tasks. So, in the cycle four, if our instruction

is a store operation we have to write that to the data memory. So, we will access the data

memory in that cycle.

And while we are performing operation on data memory our ALU unit is free. So, we can

perform an ALU operation using an ALU functional unit. Also we can perform a read from

register file. Similarly, we can read an instruction from instruction memory. Effectively in

cycle four we can perform operations, four different operations on four different components.

And also again, if you are considering a single cache memory to store both the data and the

instructions and if the instruction, if the cache is having a single port, then we cannot perform

both data write operation and the instruction read operation from the cache, because the cache

is a single cache which stores both the instructions and the data.

And also it has a single port, a read port. So, as a result there is a constraint, resource

constraint, and that degrades the overall performance, but whereas, if I consider the cache as

a split cache where instructions are stored in a instruction cache memory and the data is

stored in the data cache memory then these two caches are independent and we can perform

read operations simultaneously from these two caches. And that will improve our overall

performance. Effectively, in other words in this particular example, we consider a split cache

mechanism so that data read and the instruction read operations are performed simultaneously

on the respective memory components.

And in the cycle five, if it is an ALU operation or a load operation, we have to write contents

to a register and that will be performed on register file. So, effectively we are going to

perform register write operation in this fifth cycle or register file. And also because the

register file is independent of the data cache, we can perform data write operation on the data

cache. And also we can perform ALU operation simultaneously with other two computations.

And now we can also perform a read operation for some instruction which requires data to be

read from the register file, but we know that we are already performing data write operation

for one instruction which is writing to the register, that is the write back stage. So, when we

are going to perform a write operation and a read operation. So, generally we are going to

perform write first and then we perform a read operation. And if both read and write to the

same register then automatically we have to apply some optimizations like the operand

forwarding technique that, we are going to discuss when we come to the appropriate module.

Also while we are performing all these things we can fetch a new instruction from our

instruction cache memory. So, that is through the instruction cache that is IM and similarly,

we can continue. Effectively when we are dealing with this five stage the pipeline, we will

involve different hardware components in our processor to perform these operations, such as

instruction cache memory, data cache memory, register file, ALU units and so on.

And if at any stage, if a component is not available then we are going to get pipeline stall and

these are called as hazards and those things we are going to discuss in the next module. As

long as there is no resource conflict. As long as there is no dependency among instructions

and as long as all the stages of the pipeline are going to take the same amount of time through

a k-stage pipeline, we can get a k fold increase or improvement in our the pipeline

performance as compared to a non-pipeline design. Now, we will consider an example to see

what is the improvement that we can get through a pipeline design as compared to a non-

pipeline design?

(Refer Slide Time: 32:50)

So, the problem statement is we consider a non-pipeline processor that has a 1ns clock cycle

and it uses four cycles for ALU operations. And branches also take 4 cycles and for memory

operations it takes 5 cycles. And also we are going to execute some application in which we

have 40% of the operations are the ALU operations and 20% of the operations are branch

operations and 40% of the operations are memory operations.

And also we assume that because of the clock skew and the setup so, this pipeline registers

are going to take 0.2ns. So, ignoring any latency impact, so, what is the speed up we get, if

the instructions are executed through pipelining? So, if we are considering a non-pipeline

design, we know that there are 40% of instructions are ALU operations and which are going

to take 4 cycle latency. And 20% of the instructions are branch instructions which are also

going to take 4 cycle latency.

And 40% of instructions are memory operations which are going to take 5 clock cycles. And

we know that each clock cycle is taking 1ns. Effectively the average execution time for our

given application with these characteristics, take 4.4ns, to perform, to execute a single

instruction.

Whereas, if we are considering a pipeline design. We know that in a pipeline design and also

we are also considering a scenario where. So, there are no dependency and other things. So, if

we are considering such idealistic scenario and we know that each clock cycle is going to

take 1ns. And also each stage is having an overhead of 0.2ns because of this pipeline

registers. Effectively we can perform execution of an instruction with a delay of 1.2ns if we

are considering a pipeline design.

So, effectively, we can perform an instruction execution with 1.2ns if we are considering a

pipeline design whereas, 4.4ns, if we are not using a pipeline design for this given

application. So, as a result the speed up because of the pipelining is 3.7 times. So, though we

are considering the 5 stage pipeline we are not getting a 5x improvement because of the

overhead associated with the pipeline registers as well as non-uniform the computations or

otherwise like because of this external fragmentation because some instructions or some

types are taking 4 pipeline stages.

Some are taking 5 stage pipeline altogether and because of that we get overall speed up of 3.7

times as compared to a non-pipeline design. So, with that, we conclude this module on

fundamentals of pipelining. And in next module we are going to discuss, what type of hazards

we get with the pipelining and how to overcome those hazards.

Thank you.

