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Fundamentals of Pipelining (Part 1)

So, in this  module we are going to discuss the fundamentals  of pipelining.  And we find

pipelining applications in many scenarios in our real life. We will consider one example. So,

for  example,  consider  the  admissions  in  an  engineering  college  or  in  a  university.  This

consists of the set of steps a student has to go through for taking up seat in university or

college. So, first he has to go for verification of medical records through a doctor.

Next the student has to go to a person who will verify the certificates. And finally, once the

seat is allotted the student has to go to a person to pay the fee. So, effectively in this process

we can see the student go through different stages before paying the fee. And now while

doctor is busy with verifying medical records of a student, the person who is verifying the

original  records,  the  original  certificates  will  be  free.  And  similarly,  the  person  who  is

collecting the fee also will be free. So, now if, at any point of time if one student is taking

services of all these three people, so, overall the efficiency will not be there.

So, overall efficiency will be significantly degraded. So, rather because these three persons

are doing three different tasks, so, what we can do is, while one student is consulting a doctor

for  medical  record checking the other  student  can go to  the person who is  verifying the

certificate. So, the third person can go to person who is collecting the fees. So, in other words

while the first student is busy with the payment of fee, the second student will be busy with

certificate verification and the third student or the new student entering the queue will be

busy with the medical record verification.

Let us assume that each of these tasks will take x amount of time. And the first student will

complete his task after the x amount of time and after that every x units of time one student

will complete his task, because all these three tasks are independent and then, so as a result,

like so different students will be there in different phases of their admission process. So, the



overall the time it takes for completing the admission process for, let us take for hundred

students, will be significantly reduced.

And such types of applications we can find in real life scenarios plenty. So, effectively we

can see pipelining applications everywhere and as a part of computer architecture course we

are going to focus on pipelining of instruction execution, but in this particular module we are

going to see the basics of pipelining.  And then we will  illustrate  this  pipelining with an

example by considering a combinational circuit.
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So, a pipelining can be defined as partitioning a system into multiple stages and each of these

stages are separated by a set of buffers. So, that means like between two stages we will put a

buffer and that buffer is going to store the computations whatever is done by previous stage.

So, effectively if I divide my overall computations into n stages. So, I will consider n buffers

intermediate  to  each of these pair  of  these stages.  They store the intermediate  computed

values. So, once we have this, a process of dividing a system into smaller pieces.

So, that multiple independent computations can be processed through this different stages.

And as a result the performance can be improved. Performance improvements we get through

pipelining is proportional to the depth of the pipeline. If I divide a computation into n tasks,

in an ideal scenario, I can get a performance improvement of n times. And this performance is

actually,  we  can  also  represent  using  throughput  and  the  pipelining  will  improve  the



throughput of the system. So, consider an example here, let us assume that we have here a

combinational circuit, which takes n gate delays to compute a task. 

So, here given an input to the combinational circuit, it takes n gate delays to produce the

output. Now, if this entire combinational circuit is not partitioned, then effectively we will

process the given inputs for every n gate delays. So, in other words, we will get a bandwidth

of one by n. So, here one computation will be completed for every n gate delays.

Now, if I want to partition this combinational logic into two pieces, in an ideal scenario, each

piece is going to take n/2 gate delays and since I partitioned the combinational logic into two

parts  and  I  separated  these  two  parts  by  using  latch.  And  so  the  first  part,  half  of  the

computation will take n/2 gate delays and after n/2 gate delays, then I will get the partial

output and when we apply the clock then so, this will be latched in the intermediate buffer.

And once the data is stored in intermediate buffer and then this will be taken as input to the

second stage of computation which takes another n/2 gate delays. And we will get the output

at the end of n gate delays with added latency of the propagation delay through the latches.

So, here each of these latches have a clock. So, effectively we latch the input, we latch the

output from the previous stage only at a particular clock pulse. And once it is latched, then we

can use this as input to the next stage and this will continue. So, as a result, once two stages is

separated by latch so, while the second stage is taking input from latch, the first stage can

work with new set of inputs and the first stage output will be written to latch only at regular

clock pulse and that we need to determine based on the computational delay required for each

of these individual stages. And once we divide the computation into two parts our bandwidth

will be effectively 2/n, because we will get the output at every n/2 gate delays except the first

one. The first one is going to take n gate delays excluding the delay through the latch, but

after that every n/2 delays we will get the next output. So, effectively our bandwidth will be

2/n.

So, in other words,  in n gate delays we are going to compute two inputs.  And now, if  I

continue the logic again,  for example,  divide the combinational logic into three parts, by

considering the three stages and each adjacent stages are separated by a latch. And now each

of these sub stages is going to take n/3 gate delays and effectively our bandwidth will be 3/n.

In other words, if I divide my combinational logic into k stages, I can get a bandwidth of k/n.



In other words, the bandwidth will be improved by k times. So, potential k fold increase in

throughput is obtained by k stage pipeline.

Again, this is an ideal scenario, where we will get this k fold increase, but in reality we may

not get this k fold increase. So, now having discussed this, so one can say that OK, I can just

go for any k, so that, I can improve throughput significantly. If we consider k very large, then

you can get a significant improvement according to this statement, but in reality that is not

the case. So, there are several factors impact the number of pipeline stages or the depth of the

pipeline.

(Refer Slide Time: 09:23)

So, the major constraint which limits the number of pipeline stages or depth of pipeline is the

clocking constraints. So, let us assume that we have a combinational part which is denoted as

F and the set  of latches denoted by L. And now this combinational logic will take some

amount  of  time  for  processing  the  inputs.  And  since  the  combinational  logic  can  have

multiple paths from input to output, so, as a result we need to consider two timing parameters

one is the TM which is the maximum propagation delay through the combinational logic F.

And  there  is  another  one  Tm which  is  the  minimum  propagation  delay  through  the

combinational logic. And since we also considered latches, which are separating the adjacent

stages of the pipeline and it takes TL amount of time. The TL amount of time is needed for

proper clocking because a latch requires a setup and the hold times and so on.



So, effectively so given an input, the input will take either Tm  or TM amount of time to reach

the output from the inputs and it requires another TL amount of time to be latched properly in

the  buffer  or  pipeline  register. Now assume that,  we are  planning to  give  inputs  to  this

combinational logic at T1 and T2 and these are the timings at which we want to apply the

pipeline the clock.

So, T1 , T2 represent the time at which the first and second set of signals applied to the inputs

of F. Now once we have mentioned T1 , T2 and also we have TM, Tm and TL, we will give an

equation, inequality which is (T2 + Tm) > (T1 + TM + TL). This indicates that, the second set of

inputs can be given to this combinational logic or pipeline logic, at a time which should be

greater than the time at which the first signal is given plus the time it takes for processing the

first set of inputs.

The maximum time it takes for the first set of inputs to reach the output plus the time it takes

for proper latching minus the minimum amount of time the second set of inputs will go from

input to  the output.  In  other  words  (T2 + Tm)  > (T1 + TM + TL  ).  So,  (T2 + Tm)  actually

represents the time at which the second set of inputs are applied to the combinational logic

and the minimum amount of time these inputs take to reach from the input to the output.

And T1 + TM indicates the time at which the first set of inputs applied to this combinational

logic and the maximum amount of time, these inputs are taken to reach from input to the

output. And once the inputs are processed by the combinational logic and these outputs have

to be stored properly in the latch. So, that is going to take TL amount of time. So, if we

rearrange this inequality, we will get T2 - T1, is the interval between the first set of signals

applied to the combination logic and the second set of the inputs applied.

In  other  words, the  clocking time between two sets  of  inputs  applied  to  the  pipeline,  of

pipelining, of this combinational logic, which is greater than (TM - Tm + TL). In other words,

we have to apply clocking such a way that it should be greater than the difference between

the maximum time and minimum time for the inputs to be processed by the combinational

logic plus the time it takes for proper latching.

And again like, if we design our combinational logic in a proper way such that all the paths,

critical paths are of equal length, if we make that way then TM is almost equal to Tm. Once we

have the input to the output path length is same, even if there are n numbers of paths from



inputs  to  outputs.  And  if  we  make  the  lengths  of  these  paths  equal  then  our  maximum

propagation time and the minimum propagation time will be almost same.

So, as a result our T2 minus T1 will be greater than just TL. In other words, our depth of the

pipeline is determined by the TL, the minimum time required for latching and the clock skew

limit, the depth of the pipeline. Here the clock skew is because when we are dealing with

synchronous  circuits,  so  all  the  components  in  the  synchronous  circuits  will  work

synchronously by using a clock. So, there is a clock which generates this clock signals. And

these clock signals may reach different components at different times.

There may be as slight variation and that variation is called clock skew. So, effectively our

number of pipeline stages is determined by this clocking constraint. So, once we have this,

then we can clearly see that we can divide our combinational logic to a maximum number of

pipeline stages by satisfying this clocking constraints. As long as we take care of TL and the

clock skew, we can divide our combinational logic into n number of pipeline stages. And this

foil is actually determining the maximum number of pipeline stages that we can come up

with for a given combinational logics, or combinational circuit computation, but again not

always  this  maximum number  of  pipeline  stages  is  optimal.  So  when I  say optimal,  so,

depending on the requirements our optimality is determined.

(Refer Slide Time: 16:23)



So,  we  will  consider  optimal  pipeline  depth  by  considering  the  cost  as  well  as  the

performance. Let us assume that, G be the cost of a non-pipeline design and T be the latency

of non pipelined design. And since, we are planning to make this design into a pipelined

design so, we will need to consider set of latches and the cost and the latency associated with

the latches are determined by L and S. So, the cost of a k stage pipeline design is G + kL

because we know that once we divide our non-pipeline combinational circuit into a pipelined

design by dividing that into stages k stages.

So, we need to consider k latches. So, effectively our overall cost associated with our earlier

non pipeline design is increased by k into L. So, effectively the total cost associated with this

k stage pipeline is G + kL, where G is the cost associated with the non-pipeline design and k

is the number of stages and each stage we require a latch and L is the cost associated with the

latch. This cost can be defined as the area it takes and now, we will now look at the latency

point. So, we know that a non-pipeline design is going to take a latency of T. So, once we

consider a pipeline design and that too k stages.

So, our overall latency is decreased significantly and that is represented by (T/k) + S because

we divided our non-pipelined design into k stages. So, each stage is ideally going to take T by

k amount of time and there is some latency associated with propagation delay of the latch that

is  represented  by  S.  So,  effectively  for  each stage  our  latency is  now (T/k)  + S.  So,  in

summary once we divide a non-pipeline design into k stage pipeline, then we have, we incur

a cost of G + kL, but the latency is reduced to (T/k) + S. Let the performance be defined

as one by latency. Now, we want to see whether how many pipeline stages are required if our

design is optimal in terms of cost per performance.

So, cost per performance is cost into latency according to the above equation. So, effectively

we will have the overall expression becomes GS + LT + k * LS + GT by k. And now we want

to find the optimal number of pipeline stages which minimizes our cost per performance. We

have  to  incur  least  cost,  at the  same  time;  we  have  to  get  maximum  performance.  So,

effectively we take the first  derivative of this expression and equate that to zero and the

derivative with respect to k because we want to find the number of pipeline stages.

Once we do that, then we get k optimal equal to a square root of GT / LS. So, in other words,

for a given combinational circuit which has a cost of G and the latency of T and latch cost is



L and latch latency is S, then we can come up with the optimal number of pipeline stages for

the combinational circuit by considering the square root of GT / LS number of stages.

So, this indicates that given a combinational circuit, if we want to optimize the design for cost

per performance, then we cannot divide the combinational circuit by not more than square

root of GT / LS number of pipeline stages. So, having discussed this now we will consider an

example of a floating point multiplier.

(Refer Slide Time: 20:52)

And this example is taken from research paper published by Wasser and Flynn in 1982. So,

here we are considering a fixed point multiplier for floating point numbers. And we know that

the floating point numbers have sign bit exponent and the mantissa. Of course, the example

here the authors considered are not following the IEEE standards and as a result we have a

mantissa of 56 bits with the hidden bit and 8 bits of exponent. So, we are considering a biased

128 exponent and a sign bit. And given two floating point numbers when we are multiplying,

the sign will be determined by XOR of the two numbers and that will be obtained in S3

which is going to give the resultant sign of this multiplication.

And we have exponents  e1 and  e2 and  we need to  perform the  addition  because  we are

performing  a  multiplication  of  two  floating  point  numbers.  So,  we  will  just  add  the

corresponding  exponents.  And  in  the  case  of  mantissa  we  use  a  fixed  point  mantissa

multiplier logic, which actually consists of the partial product generations and then we add



this partial products. So, that is represented as partial products reduction. And finally, once

we have, we keep on adding these partial products to get intermediate results and finally we

end up with two partial  products  and we just  add that  by using carry look ahead adder.

Finally, we get the actual the value. 

And once we value, we need to normalize that and also we may need to perform rounding.

So, effectively, to perform this floating point multiplication of two floating point numbers and

the  authors  observed  that  these  are  the  total  amount  of  time  it  takes  for  each  of  the

components - 125ns for partial product generation, 150ns for partial product reduction, 55ns

for  final  reduction  and 20ns  for  normalization  of  the  result,  50ns  for  rounding off.  And

overall latency it takes is 400ns for performing multiplication of two floating point numbers.

So, effectively, if we do not, if we are not going for pipelined design, we can perform a

multiplication on two floating point numbers with a latency of 400ns, a delay of 400ns. So, if

we want to pipeline this design, then how the performance is improved that we are going to

see now.

(Refer Slide Time: 29:30)

So, we know that the multiplication part. The multiplication of these mantissa components

consists of three portions; one is the partial product generation, partial product reduction and

final reduction. And each is taking 125ns, 150ns and 55ns respectively. And the next one is

normalization which is going to take 20ns and rounding is going to take 50ns. Now, given



this,  delay  values  for  each  of  these  components,  we  can  divide  our  total  floating  point

multiplication  process  into  a  different  number  of  stages,  but  this  particular  division  is

optimal. The reason is here, you can see, the first stage is going to take 125ns because add or

subtract is going to take less amount of time than the partial product generation. So, as a

result when we decide a pipeline stage, we have to consider a stage, a component in the

pipeline stage is going to take maximum delay. So, in this particular case, the partial product

generation is going to take more time. So, we are going to consider 125ns for this.

And now for second stage we can see the partial product reduction which takes 150ns. We

cannot combine the generation and reduction into a single stage. If we combine this then

effectively our overall delay for that stage is going to be 275ns, which is not optimal. And

similarly, the last three components are put together, are considered as a single stage which is

going  to  take  125ns.  In  other  words,  when  we  divide  this  floating  point  multiplication

computation into three stages, the first one is going to take 125ns, the second one is taking

150, third one is taking 125ns.

And now, once  we have  this  three  divisions,  the  three  stages  when  we divided  the  non

pipeline floating point computation, we have to decide the pipeline cycle time. And whenever

we divide any computation into different stages in a pipeline, the pipeline stage latency or the

delay is determined by the maximum delay of any of stages. Here in this particular case, two

stages are taking 125ns and one stage is taking 150ns. So, effectively the middle stage is

actually determining the overall pipeline stage cycle time and which is 150ns plus because we

are separating stages by using pipeline registers or latches.

And we need to consider the latency associated with the latch also. In this particular case, we

considered 17ns, for processing, for storing the data in the pipeline, pipeline latch or pipeline

register and 5ns for setup time. Effectively 22ns is the overhead we get, the overhead we

incur because of this pipeline registers. In other words, our pipeline stage time or pipeline

stage  delay  is  equal  to  the  delay  associated  with  the  stage  computation  plus  the  delay

associated with the pipeline registers.

In other words, in this particular example, we get a pipeline stage delay of 172ns. So, once

we have this pipeline design for our floating point multiplication after the first computation is

done, if we are supplying the inputs to this floating point multiplier continuously, we can get

outputs at every 172ns as compared to 400ns that we incur in the non-pipeline design. So, as



a result, we can easily see that this pipeline design of floating point multiplier is going to

improve the throughput by 2.3 times, which is nothing but 400 by 172. And remember the

pipelining is going to improve the throughput, overall throughput, of the system. As long as

we supply the inputs to the pipelined unit continuously, but if we are supplying only one pair

of inputs to this floating point multiplier, the actual latency it takes to compute the output is

actually 560ns, as compared to 400ns in the case of non-pipeline design.

So, as a result,  so if we are performing a single computation then pipelining may not be

efficient. So, which actually incurs extra latency because of this the pipeline registers, but

again when we are designing a  pipeline,  when we are considering a  pipeline design,  for

computation our assumption is we are going to use that pipeline design for processing a large

collection of inputs. So, that is the reason why the pipelining is going to improve throughput

significantly. So, with that I am concluding this module and in the next module I am going to

discuss instruction pipelining.

Thank you.


