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So, in the last module, we discussed the basics of DRAM based memory, and in this module,

and the next module we are going to look at the details of DRAM based memory controller

design. And the DRAM based memory controller provides, an interface between processor

and I/O devices and the DRAM based memory. And through this interface the processor and

I/O devices can access data, from the DRAM memory systems.
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The  DRAM  memory  controller  needs  to  equip  with  several  functionalities,  and  these

functionalities  include  converting  the  memory  request  to  DRAM  commands,  enforcing

timing  constraints,  efficient  row  buffer  management  policies,  and  the  address  mapping

mechanisms,  the  refresh  managements  and  finally  the  memory  scheduling.  Because  the

DRAM  based  memory  controller  needs  to  do  all  these  things.  So,  as  a  result  the

microarchitecture of the DRAM memory controller need to have the several components, to

ensure that the proper functioning of these different things.



So,  if  we look at  microarchitecture  of  a  DRAM based memory controller, it  consists  of

collection  of  queues.  It  consists  of  schedulers,  there  is  a  request  scheduler,  there  is  a

command scheduler, and there is a queue which stores all the responses coming from the

DRAM device, and there is a command queue, which stores all the commands, which are

converted from the processor requests. And similarly, we have set of queues to store read

requests and write requests from the processor and the I/O devices.

So, in this particular the microarchitecture, we consider two separate queues for reads and

writes from the processor and I/O devices. But, again so we may come up with different

microarchitectural designs. So, similar to the processor microarchitecture, where for the same

ISA, we can have variety of processor microarchitectures.

In the same way, in this memory controller design also, to perform the basic operations such

as processing the processor and I/O requests and supplying the data from DRAM devices

back  to  processor  and  I/O,  memory  controllers  can  be  designed  using  variety  of

microarchitectures,  and  each  one  of  the  microarchitecture  will  have  a  specific  power

performance values.

So, effectively as I mentioned earlier, the DRAM based memory controller provides a design

space exploration consists of various performance, and power points. So, we need to come up

with an efficient memory controller  design, for reducing the overall  latency and maintain

sustainable  bandwidth.  So,  effectively  the  design  goals  for  any  memory  controller  are

maximizing  the  system  performance,  minimizing  power  consumption  and  also  we  may

consider minimizing the overall Die area.

So, we can design a DRAM based memory controller to optimize any of these design points,

or we can come up with a memory controller design, that can optimize a combination these

design points. So, in this module we are going to look at three key functionalities of DRAM

based memory controller, such as converting the memory request into DRAM commands,

enforcing the timing constraints and row buffer management policies. 

And in the next module, we are going to look at address mapping, the refresh management, as

well  as  the  memory  scheduling  techniques.  So,  first  we  start  with  converting  processor

generated memory requests to DRAM commands. We know that a processor or I/O generates

a memory request, such as load and store to access data from the memory.



So, typically when there is a load request, it specifies a load and an address, indicating that

we have to go to that particular address in the memory, and get the data stored in that address.

Similarly, when there is a store instruction, we specify the address and the content indicating

that, this content needs to be written to the address specified in the store instruction. Now, we

need  to  convert  these  load  and  store  instructions  into  DRAM  understandable  memory

commands. 

We already discussed in the previous module, the basic DRAM commands are PRE, ACT and

CAS. We know that, whenever we want to perform any access operation on DRAM array, we

need to make the DRAM array or the entire DRAM bank into a certain voltage level so that

the activation command can be performed successfully. In other words we need to make, we

need to reset the sense amplifiers and the bit lines associated with the DRAM bank on which

we are going to perform an operation.

To do that, we issue a command called a PRE or a pre-charge. Once, we issue this pre-charge,

the bit lines and the sense amplifiers of the corresponding DRAM bank will be reset, so that

following ACT command can be performed. So, we need to apply a PRE before issuing an

ACT command, and after issuing an ACT command, the data from a selected row is written

on  to  the  sense  amplifiers.  And  then  we  can  select  the  required  data  from these  sense

amplifiers, by using a command called as CAS, Column Access Strobe.
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Effectively  for  each  load  and  store,  we  have  to  convert  these  instructions  into  memory

commands which are PRE, ACT and CAS. But, again it is not necessary that each of load and

store  instructions  need  to  be  converted  into  PRE,  ACT and CAS.  So,  depending  on the

context, we can convert our load and store instruction either into a one memory command in

two or all the three.

So, we will discuss this with an example, consider a scenario where we have four requests,

the first 3 are load requests and the fourth one is a store request. And all these 4 requests are

to the same bank, but within that bank these requests can go to different ranks. For example,

request R1 wants to read the data from row 0 column 4, while request R2 wants to read the

data from the same row, but from a different column and request R3 wants to read from a

different row from the same bank and from column 1. And finally, the request R4 which is a

store instruction, wants to write to row 1 at column 3. So, now once we have these set of

requests, now we will see what happens if we issue these requests in the same order that is

R1, R2, R3, and R4.

Now what  happens  and how many memory commands we have  to  issue  to  a  particular

command queue, which is associated with a particular bank. And remember that all these

requests  are  to  the  same  bank.  So,  we  are  going  to  insert  the  corresponding  memory

commands into the same command queue. So, let us consider the first scenario, where we are

going to follow the request order as R1, R2, R3, and R4.



First, we issue R1, followed by R2, followed by R3 and finally we issue R4. Whenever, we

want to process the first request R1, we assume that we need to issue a PRE command, so

that the entire DRAM bank can be reset in such a way that our following ACT command can

be performed successfully. So, effectively when I issue R1, we need to perform a PRE to

reset the sense amplifiers and the bit lines of the bank. An ACT command, so that we can

select row 0 from the bank and finally, we have to issue a CAS command to read the data

from column 4 from the selected row which is stored in the sense amplifiers. Now, after this

request R1 is converted into a combination of memory commands, which consists of PRE,

ACT and CAS. Now, when we go for the next request, which is R2. 

As we know that R2 is also to the same row, but to a different column. So, for this request

R2, we do not have to again go for precharge activation. Because, we can still exploit the row

buffer locality, that is present in the sense amplifiers because already the same row is read

into sense amplifiers by using the previous request. So, when we want to issue the second

request R2, we can directly get the data from the sense amplifiers.

So, as a result so, when we want to convert an R2 which is following R1. So, all we require

is, we just have to give only CAS command, and here we are assuming an open page policy.

Again this open page and closed page policy, we are going to discuss after a couple of foils.

And when we come to the third request, which is a load request to row 1 and column 1.

Now, unlike  the  previous  request  R2,  request  R3  cannot  exploit  the  row buffer  locality

because request R3 is to a different row as compared to the previous two requests, those are

to row, row 0. So, as a result there is a row conflict. So, first thing we have to do whenever

there is a row conflict is that, we have to write the data from the sense amplifiers back to the

row 0 and we have to reset the sense amplifiers and the bit lines of the bank.

So, for that we issue our PRE command, so after issuing the PRE command now, we can go

ahead with activating row 1 by using an ACT command so that row 1 will be read into sense

amplifiers. And then finally, we can apply CAS command to read the data from column 1 and

finally, when there is a store instruction that is R4 which is also to the same row as that of a

request R3.

So, we can still again exploit, we can exploit the row buffer locality, so that all we have to do

is, we can issue only CAS command for this request R4. Effectively for these 4 requests, if

they are issued in this order R1, R2, R3 and R4, we have to convert this 4 requests into a total



of  8  memory  commands,  and  these  8  memory  commands  are  stored  in  our  bank  wise

command queue in the order.

So, that we start selecting a request from this bank one after another, the commands and then

issue that to the DRAM memory system. So, that the DRAM based memory system will

supply  the  data.  And  remember  here,  we  are  for  load  and  store  instructions  we  are

considering just the CAS command. But, actually there are two types of CAS commands one

is the read CAS, and the write CAS. 

Whenever, we want to perform a load operation we have to issue a read CAS and whenever

we want to perform a store operation we have to issue write CAS. But, for the simplicity we

are considering just the CAS command. Now, we will consider another scenario, where we

change the request order. So, here the first 2 requests are following the same order, but the

last 2 requests are interchanged. So, as a result we issue R1 first, followed by R2, followed by

R4 and finally R3 is selected.

If I consider this, since there is no change in the ordering of R1, R2. So, there is no change

in the type and the number of memory commands as that of the previous one. But, since R4 is

coming immediately after  R2,  again  R4 is  to  a  different  rank,  so we have a  row buffer

conflict. So, we have to issue a PRE command. So, effectively PRE is in the critical path for

performing our R4 operation, and after that we issue an ACT command to activate row 1.

And finally, we can apply CAS command to perform a store operation on column 3, and after

that we issue an R3, which is also to the same row as that of the store instruction. So, as a

result we can exploit row buffer locality, and convert this r our last instruction into a single

command, which is a CAS. So, effectively here also we convert these 4 instructions into 8

memory commands as that of the previous one. But, there is a catch. In the first ordering, we

have a load followed by a store. But, where as in the second ordering a store followed by a

load. So, effectively whenever we are performing a store operation and after that if we are

going to issue a load operation because the I/O gating resources are occupied by previous

store operation.

So, we have to wait for some amount of time so that this write operation is going to release

this I/O getting resources, and then we can perform the following load operation. So, that is

the reason why even though these two orderings are going to give you the same number of



memory commands into the command queue but, the second ordering is going to take slightly

more time mainly because, of mainly the store to load latency.

Now, we will  consider the third ordering which is R1, followed by R4, followed by R3,

followed by R2. So, in this case so, as usual there is no change in the issue of the first and

second which is always R1. So, we start with a pre, ACT and CAS. But, now there is an R4

which is actually a store instruction to a different row. So, as a result we incur a row conflict

so again we have to precharge the bank so that we can activate row 1 to perform a store

operation.

And after that we will perform a CAS operation, and then there is a load instruction to the

same row that is row 1 so, we can exploit row buffer locality. But, still we incur store to load

latency and finally, there is a request R2 which is to a different row as that of the previous

request R3. So, again we need to close the previous opened page and we perform a PRE,

followed by ACT and CAS. Effectively if we use this ordering so, we are going to exploit

locality to a certain extent.

But, not a full extent as that of the first combination, and we also incur store to load latency,

and effectively these 4 requests are converted into a total of 10 DRAM memory commands,

and  which  are  stored  in  the  command  queue.  And  finally,  when  we  consider  the  other

reordering request ordering, which is R1, followed by R4, followed by R2, followed by R3.

So, here if we see each of these requests are addressing to a different row. So, as a result, for

each  of  these  things,  each  of  these  requests,  we  have  to  pre-charge  before  performing

activation. So, as result we incur a significant penalty, and this is the worst request ordering

among all these 4, and we require a total of 12 memory commands for these 4 requests.

So, effectively this says that the selecting a request from a request queue matters a lot in

terms of the number of memory commands, we are going to push on to the command queues.

And  note  that  the  command  queues  have  a  limited  number  of  entries,  and  we  have  to

efficiently utilize this limited space, available in these command queues. And also another

thing is if we issue an unnecessary PRE, we going to degrade our overall performance as well

as it consume extra power consumptions.

And similarly, unnecessary ACT is also going to increase our overall, the access time as well

as the power consumption. We have to select always a proper request ordering from the read



and  write  request  queues,  such  that  the  total  number  of  memory  number  of  memory

commands  generated  from  these  requests  should  be  minimal.  So,  having  discussed  this

converting the memory request into memory commands now, we are going to look at few

DRAM timing parameters.

Note that, the DRAM memory controller needs to satisfy several timing constraints. But, we

are not going to discuss all the timing parameters that are associated with the DRAM memory

controller due to the lack of time. So, we are going to concentrate on few very important

DRAM timing parameters, and whenever the DRAM controller is going to issue a command,

memory command, to the DRAM device, it has to respect several timing parameters because

we know that the DRAM devices are passive components.

And it just relies on the memory controller to supply requests and as soon as there is a request

from the memory controller, DRAM device is going to supply the requested data. So, as a

result in order to ensure the proper functioning of the entire system, the memory controller

needs  to  take  care  of  several  timing  parameters  and  it  has  to  respect  several  timing

parameters. So, as a result the entire DRAM controller design is constrained by these timing

constraints, and this also, these timing parameters also specify the overall performance of the

memory system.
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So, we start with row precharge delay. So, we know that the DRAM device needs to be pre-

charge before, we perform any activation command on the bank. This is mainly because,



whenever we perform a previous ACT command, the bit lines and the sense amplifier voltage

levels are different. So, we need to reset the voltage levels on the bit lines, and the sense

amplifiers before, performing activation to a different row in the same bank. 

So, that is specified by tRP and this is the minimum time gap between a PRE command and an

ACT command to the same bank. Which is nothing but, if I issue a PRE command to a

DRAM bank at time t, I can issue an ACT command to the same bank only after t + tRP time. I

cannot issue my ACT command before, t + tRP.

If I issue an ACT command before that, the DRAM system may supply wrong data. So, in

order to ensure that the correct data is transferred by the DRAM device, we have to wait, we

have to instruct the memory controller to issue the ACT command, only after tRP time from

the issuance of the PRE command to the same bank. So, the next one is row to column delay.

So, this is once I perform a PRE command so that, the entire DRAM bank is preset so that,

we can perform an ACT command on that particular bank.

So, once I issue an ACT command so that is once I assert row address strobe, the address

higher bits of the address is sent to the row decoder and which is going to select a particular

row in the DRAM bank, and that data is read from this elected row in the DRAM bank, and

the data is written on to the sense amplifiers. So, the time it takes between the row access,

and the data ready at the sense amplifiers is called as row to column delay.

This specifies that the minimum time you have to wait, before reading the data from the sense

amplifiers after issuing an ACT command. In other words, if I issue an ACT command at

time  t,  I  can  issue  a  CAS command  to  the  same bank to  read  the  data  from the  sense

amplifiers only after a ‘t + tRCD’, where tRCD is the row to column delay. So, we issued a PRE

command  so  that  the  entire  bank  is  preset  or  precharged  and  then  we  applied  an  ACT

command so that a particular row is selected.

And the data from the selected row is written on to the sense amplifiers. Now, we know that

the DRAM cells are self-destructive, when I say DRAM cells are self-destructive, whenever

we perform any access operation on DRAM cells, the DRAM cells cannot retain the same

charge. And as a result, the value represented by the DRAM cells will be inconsistent with

the actual value stored in it, so in other words whenever we perform any activation, it is our

duty to ensure that data is restored properly.



And this is specified by Row Access Strobe or Row Access Strobe delay, which is called as a

tRAS which is nothing but, the sum of tRCD and the data restoration delay. So, this also says that,

so when I issue an ACT command, I cannot issue a PRE command to the same bank within a

time of tRAS. In other words, if I issue an ACT command to a particular row in a given bank at

time t, I can issue a PRE command to the bank only after ‘t + tRAS’ time. 

Now, we write a particular row on to the sense amplifiers and now the sense amplifiers have

the data. Now, we want to perform a column read from the selected from the sense amplifiers.

To do that, there is a timing parameter which is tCAS the tCAS specifies the Column Address

Strobe delay, and this is the time interval between the column access command, and the start

of the data written by the DRAM device.

Once I issue a column address command, once I assert CAS - Column Address Strobe, the

lower part of the address is sent to the column decoder and the column decoder will select the

appropriate data from appropriate position in the sense amplifiers, and it starts writing the

data to the output. So, effectively the tCAS specifies that the time interval between a column

access command, and the start of the data written by the DRAM device. It takes some amount

of time after which data can be start returning by the DRAM device.

Now, there  is  another  key  parameter,  which  is  column  to  column  delay.  So,  note  that

internally  the DRAM device consists  of a collection of  DRAM arrays  and these DRAM

arrays will supply data in a prefetched manner. When I issue a single column read command,

based on the prefetch width of the DRAM device, we are going to get multiple bits read from

the DRAM arrays, and the prefetch width is going to specify the time gap between a readings

from one column to the other column.

So,  that  time parameter  is  called  as  the  column to  column delay  or  tCCD and  this  is  the

minimum column command timing determined by the internal bus or a prefetch length. So,

we internally transfer the data from this DRAM arrays in a connection of internal bus length,

which is specified by the prefetch, and once we have this data then we will pack everything

into our data output unit.

And from there, we can transfer the data on to the data bus by using our external the burst

length which is specified by tBL which is going to be discussed, in the next point. As the next

point, the tBL specifies the duration that the data bus occupies on the data bus so, as a result



this data bus cannot be available for performing any other operation within this tBL time. But,

this is with respect to performing a read operation. 
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But, when we are performing a write operation, we need to consider an important parameter

which is  called as write to read delay. So, in this write to read delay tWTR whenever, we

perform a write operation, so this write operation, occupies write operation is holding this I/O

gating  resources.  So,  whenever  we  want  to  issue  a  read  operation  following  this  writes

operation, we have to ensure that this I/O gating resources have to be released by the column

writes command.

And to do that, we have to incur some amount of time that is called as write to read delay or

store to load delay, which is specified by tWTR. So, as a result whenever we are performing

read and write operations, we have to ensure that these read and write operations should not

be interleaved. We have to perform a contiguous continuous stream of read operations, and

then make a switch over to write operation and then perform sequence of write operations,

and then switch back to read operations.

If we do that, then we can eliminate this tWTR delay from our critical path. These are the two

other important timing parameters, we have to consider for performing write operations. One

is the column write delay, and the other one is the write recovery time. So, next we will

consider row cycle time, and in this row cycle time so, this is like we know that whenever, we

perform an ACT command we read the data, and then we restore the data back.



And finally, if we want to perform any other activation command, we have to ensure that the

bank  is  precharged.  So,  that  is  specified  by  tRP.  Effectively,  between  two  activation

commands,  we have  to  complete  a  full  cycle  of  operations,  which  are  activating  a  row,

restoring the data back to the activated row, and then precharging the bank which is specified

by ‘tRAS + tRP’. Effectively our tRC, row cycle time is equal to sum of tRAS and tRP.

So, this specifies that, whenever we want to issue a subsequent ACT command to a particular

bank, we have to wait for tRC time. And we know that we have to perform a refresh of the

DRAM cells at regular intervals, to ensure that the data integrity is maintained. In order to do

that,  we will  perform a refresh operation and there is a time associated with this  refresh

operation, and that time is called as a refresh cycle time.

And this refresh cycle time, this specifies as the time at which, time by which the DRAM

device is not available for performing any other operations on the DRAM device. When I

issue  a  refresh  command at  time t,  I  cannot  perform any other  useful  operations  on  the

DRAM device, until ‘t  + tRFC’ and this refresh cycle time depends on the capacity of the

DRAM device.

For example, if the DRAM device has 8k rows associated with it, and as specified by the

JEDEC standard that for each DRAM device we issue 8k refresh commands. So, for each

refresh command, we can refresh one row associated with that. So, as a result our tRFC is

going to be the time associated with refreshing a single row.

When I say refreshing a row, we have to read the data from a row and restore it back and then

perform a pre-operation. And finally, we consider a rank to rank switch delay, we know that a

DRAM controller can consists of multiple ranks and data can be placed on multiple ranks,

and if we are going to read the data from these multiple ranks in an interleaved fashion then

we have to incur rank to rank delay. 

This delay is required mainly because, our rank is sharing the command bus, data bus, and

the address bus and so on. So, in order to release this shared resources associated with one

rank to be mapped to the second rank, we incur some amount of time and that time is called

as,  the  rank  to  rank  switch  delay.  Now,  having  discussed  these  different  the  timing

parameters, we will see what these values in terms of DRAM cycles are.



When we consider the latest DDR4, the DRAM devices, and these values are taken from

JEDEC 2012 reference manual. And you can see here tRFC takes almost 280 DRAM cycles,

and tRCD row to column delay takes 11 DRAM cycles, Row pre-charge takes 11 cycles, and

tRAS row address row strobe takes 28 cycles, and since tRC is the sum of tRP and tRAS, which is

going to take 39 cycles, and rank to rank switch takes 2 cycle time and column to column

delay takes 4 DRAM cycles and write to read is going to take 6 DRAM cycles.

And similarly, the bus length is going to take 4 DRAM cycles. So, as a result like the main

reason, why the DRAM access latency is in terms of hundreds of processor cycles is mainly

because of these timing parameters. Actual data transfer on the bus is going to take place

within few cycles. But, to get the data from the DRAM device, we need to take care of all

these parameters,  and which are going to  take significant  amount  of  DRAM cycles,  and

which translates into hundreds of processor cycles at the end.

So, that is the reason why the DRAM access latency is taking hundreds of processor cycles

and that is actually widening the performance gap between the processor and the DRAM. So,

as a result in order to overcome this memory wall problem, there is a significant amount of

research  going  on  in  the  architectural  community  to  come  up  with  efficient  memory

controller designs. And finally, we are going to look at the row buffer management policies.

So, we know that when we activate a row, the data stored in that row will be stored in the

sense amplifiers and these sense amplifiers can act as a buffer. Since, these sense amplifiers

are going to store the entire data stored in a row of a DRAM bank. We are going to say, we

are going to call these sense amplifiers also as a row buffer. And now once the data is there in

the row buffer, now I can service subsequent requests which can get a hit in this row buffer.

So  that,  we  can  eliminate  further  activation  and  a  pre-charge  of  the  DRAM  bank  that

improves our overall performance as well as the energy consumption. Now, we are going to

see what the different types of row buffer management policies are, which are applied in the

current memory controller designs.
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So, we first start with an open page row buffer policy. As the name says open page, so once a

row is activated, the data of that row is stored in the sense amplifiers, and the data from the

sense amplifiers will not be written back to the DRAM bank to the specific row location until

there is a row conflict because of new request coming from the processor.

So, whenever my next request from the processor is to the same row as that of the previously

opened row, we call it as a row hit, and whenever there is a row hit, we can supply the data

with a latency of tCAS, and if the next request is to a different row, then we are going to get a

row conflict. And because of a row conflict, we incur a row miss. And whenever there is a

row miss, we have to close the previously opened row by using a PRE command which is

going to take a tPRE time.

Then, we have to activate the new row, that is going to take tRCD time, and finally we have to

read the data from a specified location from the opened row. That is going to take tCAS time.

So, effectively whenever there is a row conflict or a row miss, we are going to incur a time of

‘tRP + tRCD + tCAS’. But, this open page policy is efficient for all the applications which are

going to exhibit high row locality.

If there is a high row locality, all you can do is, all you can do is you can activate a row once

and then service subsequent requests from the sense amplifiers or the row buffer. So, the

other extreme of this open page policy is a closed page policy. As the name suggests closed

page policy, as soon as you perform an operation you close this particular row. So, closing



this page is as soon as a CAS is performed, we apply a PRE command so, that the entire bank

is in a precharged state.

So that if there is subsequent request then we can start with the activate command. We do not

have  to  perform a PRE. Effectively, PRE can be eliminated from the critical  path  of  an

accessing or  activating a row. So,  effectively in  the case of  closed page policy our read

latency is the sum of tRCD which is nothing but the time taken for an activating a row, and then

tCAS which is the time taken for reading the data from the sense amplifiers or a row buffer.

And this type of policy is efficient for all those applications, which exhibit a very low access

locality or low request rates. If applications are not generating frequent requests to a DRAM

bank, then we can always go for this closed page policy, and in intermediate to this open

page, and closed page policy is a hybrid row buffer policy.

In  this  hybrid  page  policy  whenever  we  activate  a  row, the  data  is  stored  in  the  sense

amplifiers and rather than closing this row after performing a CAS operation immediately as

that of a closed page policy, we keep this row open for some amount of time. And there is a

fixed amount of time defined, and once this time is elapsed, and if there is no request happens

to the opened row, then we are going to close this opened page. And, if within that time

interval if there is a request to the opened row, then again we reset the counter, so that again

this page will be opened for again the fixed amount of time and it continues further. So,

effectively rather than closing an opened row immediately after a CAS, we keep the opened

row for some amount of time. But, we are not going to keep the row indefinitely until there is

a row conflict like an open page policy.

So, we can say the fixed amount of duration, and we specify this by using a timer associated

with our memory controller and the timer decrements its count, and whenever the counter

becomes 0, then we are going to close the open page. And whenever, if there is an access to

the opened row, the timer reset to the fixed value again. So, this way we can implement this

hybrid row buffer policy. And this can take care of the dynamic nature of access requests and

access locality of applications. And this is mainly, it is better for memory request sequences

whose request rates, and the access locality changes dynamically. So, having discussed these

3 row buffer management policies now, we are going to see the effectiveness of these 3

policies using an example. So, consider a set of requests which are generated at different

times.



For example, the first request is generated at time 0, second request is generated time 40,

third request is generated at time 70 and last request is generated at time 140. And initially the

Page status is empty, here when I say page status is empty. So, the bank is precharged so that

there is no content in the sense amplifiers, and the bit lines and the sense amplifiers are at

proper voltage levels. So that, whenever we want to issue a new request, we can straight

away start with an ACT command to that.

So, that is what is called as the page empty status. When I say page hit, that indicates that my

next request is going to hit in the open page which is stored in the row buffer. And similarly,

if there is a page miss that indicates that, my next request is conflicting with the page that is

opened in the row buffer. Now initially, we assume that the page is empty, and when I issue

the first request which is to row 0 and column 4 in the case of open page policy.

I have to issue an ACT command and a CAS command, because I know that the state of the

page is empty. So, I can start with an ACT command so that we can activate a row and store

the data on to the sense amplifiers. So, the row buffer is now going to have data associated

with row 0 and then we can apply a CAS command so that, we can read the data from column

4 stored in this particular open row buffer. In the case of the closed page policy, because the

page status is empty again I have to go for ACT and CAS.

Similarly, even in the case of hybrid policy also for my initial request, I have to go for ACT

and CAS. So, effectively since the page status is empty in all these three policies from the

first request, I am going to incur the same number of commands memory commands, and

also we assume that in this hybrid policy. We consider a counter value of 50, that indicates

that a recently opened page will be opened for 50 time units and within that time frame, if

there is any access to the page again then the counter again reset to 50, and if there is no

access to the open row within this fifty time units, then I am going to close that page. Now,

when we consider the second request which comes at time unit 40 and this is to row 0 and

column 5.

So, since this is to the same row so in the case of open page policy I am going to get a row hit

and effectively I incur only one memory command that is CAS. Effectively using a CAS

command, I can service my second request. But, whereas in the case of closed page policy, I

know  that  once  I  perform  a  previous  CAS  command,  I  am  going  to  perform  a  PRE

immediately, and which may take may be some 20 or 30 units of time.



After that, again it going to bring, the closed page policy is going to bring, the state of the

page to be an empty. So, as a result you have to again perform an ACT command to activate

row 0 and then perform a CAS command to read the data from column 5. So, effectively,

even when the application exhibits row locality, the closed page policy cannot exploit that. 

But, whereas, open page policy can efficiently exploit the row buffer locality, that is present

in  the  memory access  request.  And in  the  case  of  hybrid  policy, because  previously  we

accessed the row at time 0, this page will be stored in the, will be retained in the, sense

amplifiers for the next 50 units, and our second request came only at 40 time units. So, as a

result our hybrid policy also gets a row hit, and using a CAS command, we can service the

second request in the case of hybrid policy.

Now, when the third request comes at time unit 70, which is to a row one, which is effectively

a miss, there is arrow conflict. And in the case of open page policy, we have to close the

previously opened row, which incurs a PRE command, and then an ACT command to activate

row one, and then a CAS command to read the data from column 3. But, whereas in the case

of closed page policy, after the previous request is done, we issue a PRE command and by

that time the third request the PRE is already completed.

So, the row buffer is in the empty state. So, we can again go for an ACT command and CAS

command. Effectively, now, for the third request, our open page policy is incurring an extra

delay, because of a PRE in the critical path, whereas in the closed page policy, PRE is not in

the critical path. So, effectively we can service the third request efficiently if we use a closed

page policy. When we consider hybrid policy, we know that in the hybrid policy, the row is

retained for a fixed amount of time duration in the sense amplifiers. But, our third request is

to a different row. As a result, we incur a penalty in terms of issuing a PRE command, and

then issuing an ACT and CAS. So, effectively the hybrid policy is going to take the same

amount of time, as that of open page policy.

So, effectively for the third request, the closed page policy is efficient as compared to the

other  2  policies.  Now, consider  the  last  request  which  is  issued  at  140  times  which  is

effectively after 70 time units, compared to with respect to the previous request, and this is to

another row. So, effectively again we incur a penalty, because of a row conflict open page

policy going to take a overall time of tPRE, tRAS and tCAS. 



But, whereas in the case of closed page policy, because there is a 70 unit time gap between

the third request and the fourth request, and by that time the PRE is already completed in the

closed page policy. So, still the closed page policy requires only ACT and the CAS even for

the fourth request also like the other 3 requests. But, in the case of hybrid policy, we know

that the previous row that is row 1 is opened at time 70 and the timer for the hybrid policy is

having a value of 50.

So, that means the row 1 will be, row 1 is written in the sense amplifier for 50 time unit

starting from time unit 70. So, effectively it was there in the sense amplifier until the time

unit  120  and  then  after  120  time  unit,  the  sense  amplifier  is  emptying  the  contents  by

applying a PRE. So that, by that time the last request which is coming at 140, our row buffer

maintains an empty status in the hybrid policy.

So, as a result we incur only ACT and the CAS. So, from the last request we can clearly see

that hybrid policy is better than the open page policy, and from the second request we can

clearly see that hybrid policy is better than the closed page policy. Effectively hybrid policy

can exploit  the changes in the dynamic nature of the access requests  rate and the access

locality.  Whereas,  the  open  page  policy  and  the  closed  page  policies  cannot  adapt

dynamically to the changes happen in the memory request.

So, because of that typically, we can go for hybrid based row management policy, instead of

open page and the closed page policy. But, to implement the hybrid based policy, we require

extra the hardware in terms of the timers and incrementing the timers, and resetting these

timers and so on. But, those things are not there with open page and the closed page policies.

So, with that I am concluding this module and in the next module, we are going to see the

other  three  important  functions  associated  with  the  memory  controller  such  as  address

mapping, refresh mechanism, and memory scheduling. 

Thank you


