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The last lecture in this unit, what we are going to do is, actually look at some examples 

of algorithms and see how to compute their upper nodes. 
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So, we will look at two basic classes of algorithms in this unit, in this lecture. So, we will 

look at some iterative examples and some recursive examples. So, an iterative example 

will basically be something where there is a loop and a recursive program of course, will 

be something where you have to solve a smaller problem before you can solve the larger 

problem. So, you have to recursively apply the same algorithm with smaller input. 
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So, our first example is a very standard problem which you must have done in your basic 

programming course. Suppose, we want to find the maximum element in an array a. So, 

what we do is we initially assume that the maximum value is the first value and then we 

scan the rest of the array and wherever we see a value which is bigger than the current 

maximum value, max value replace it. 

And at the end of this scan we return that value of maxval that we have found which 

should be the largest value that we shown the entire value. Now, remember that we said 

that if we have two phases in this case, we have one phase where we do an initialization, 

we have three phases actually we do an inner loop and then we do a return, it is enough 

to look at the bottle neck phase, we said that if we have two parts f 1 and f 2 then the 

order of magnitude of f 1 plus f 2 is the maximum of the order of magnitudes of f 1 and f 

2. 

So, in this case it is clear that this loop is what is we want to take the most amount of 

time. So, it is enough to analyze complexity of this loop. So, now, this loop takes exactly 

n minus 1 steps. So, the worst case, any input is the worst case, because we must go from 

beginning to end an order to find the maximum value, we cannot assume anything about 

where the maximum value lies. 

Now, when we are scanning the loop in every iteration we do at least one step. So, this is 

the comparison, one basic operation and this may or may not happen. So, the assignment 

happens, if we find the new value A i which is bigger than maxval. But, since we are 



ignoring constants we can treat this as some c operations, some constant number of 

operations per iterations. So, we have some c times n minus 1 basic operations and if we 

ignore the c and we ignore this minus 1, overall this algorithm is linear, it takes order n 

time. 
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So, let us now move on to an example in which we have two nested loops. So, supposing 

we are trying to find whether or not an array has all distinct values that is no two values 

in the array A are the same. So, what we will do is, you will take this array A and then we 

will compare every A i and every A j and if I am ever find an A i equal to A j, then I will 

return false. If I find no such A i and A j, then I will not return false I would return true. 

Now, the point is in order to optimize this if I am at position i, then I will only look at 

elements to it is right. So, I will start with i plus 1 and go to n minus 1 and this will be 

my range for j. So, in order to not compare A i, A j and then A j, A i just to avoid this 

duplicate thing what we have written is for i equal to 0 to n minus 1. So, as I look at each 

element for j equal to i plus 1 to n minus 1 to it is right, check if A i is equal A j. 

So, now if I look at the number of times this actually executes, then when i is equal to 0, 

j varies from 1 to n minus 1. So, there are n minus 1 steps, when i is equal to 1 there are 

n minus 2 steps and so, on. So, as I go down when i is equal to n minus 1, there will be 1 

step, when i is equal to 2 there will be one step. When an i equal n minus 1 the outer loop 

will terminate, but the inner would not run at all, because you will go from n to n minus 

1. 



So, overall what we are doing is we are doing 0 plus 1, plus 2, plus n minus 2, plus n 

minus 1 steps. So, this is a familiar summation, this summation of i is equal to 1 to n 

minus 1 of i and this you should know is n minus 1 into n, this is a very familiar 

recurrence and this what we have already seen actually, this is O n square. So, we just 

ignore constant n square by 2 minus n by 2 O n square actually we showed at this theta n 

square, but for this moment we are only looking at upper bounds. 

So, let us say this arguments is O n square. So, it is not a trivial, O n square in the sense 

is not two nested loops of equal size, it is not i equal to 0 to n, j is equal to 0 to n is i 

equal to 0 to n minus 1 and j equal i plus 1 to n minus 1. But, still this summation 1, 2, 3, 

4 up to n is o n square and this is something we will see often. So, useful to remember 

this. 
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So, this is another example of a nested loops and this is one we choose 3 nested loops. 

Now, here what we are trying to do is, we are trying to multiply 2 square matrices A and 

B. So, we have two matrices A and B and we are trying to compute the product C. Now, 

in this product C, if I want the i, j’th entry, then what I do that look at row i in the first 

matrix, column j the second matrix and then I have to pair wise I have to do the first 

entry here, this route I do the first entry that columns I would to multiply those two, then 

I have to multiply the second entry and. So, on and then I have to multiplied the last 

entry and then I have to add that. 

So, that is what this program is saying. So, this is for each row for i equal 0 to n minus 1, 



then for each column j equal to 0 to... So, this is going through all possible entries C i j. 

Now, I am saying that for this new entry I start for assuming C i j is 0 and then I run 

through this row k equal to 0 to n minus 1, I look at A i k that is the kth element in the 

row, B k j the kth element in this column, multiply them and added to C i j. So, this is a 

loop outer loop of size n, this is another outer loop, inner loop of size n and the inner 

most loop of size n and this in order n cube. So, this is an natural example of an n cube 

value. 
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So, our final iterative example is one to find the number of bits in the binary 

representation of n. So, this is just the same as dividing n by 2 until we reach 1 or 0. So, 

let us assume that n is a non-negative number. So, n is 0 or 1. So, we assume by send that 

the number of bits is at least 1 and then. So, long as we have a number which is bigger 

than 1, we will add one more to the count number of digits and then this is a short form 

for integer division. So, we will replace n by n by 2. 

So, for instant supposing we start with the number like 9, then we will start with count is 

equal to 1, because that is what I said. When a while n is bigger than 2, I will divide by 2 

and add 1 becomes. So, I will replace count make it 2, now make this 4, then I will say 

that still greater than 1. So, I will make this 3 and I will make this 4 by 2, then I will say 

this is still bigger than 1. So, I will make this 1, then I make this 4. So, now, I have count 

equal to 4 and n equal to 1. So, this loop exits and I return count. So, it says that it 

requires 4 bits to that print number 9 which is correct, because the number 9 and binary it 

is 1001. So, now what is the complexity of this loop? Well, how many times does this 



execute? Well, it will execute as many times it takes for n to come down from it is value 

2. So, I want n, n by 2 n by 4 etcetera to come down to 1. 

So, how many times should I divide n by 2 to reach 1 and this is the same as going 

backwards, how many times should I multiply 1 by 2 to reach n. So, dividing n by 2 

repeatedly to reach 1 is the same as multiplying 1 by 2 repeatedly to reach n and this is 

nothing but, the definition of the log, what power of 2 reaches n. So, this iterative loop 

actually though does not decrement by 1, decrements by halving an each time, we can 

still calculate it explicitly as requiring log to the base 2 n steps. 
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So, we have seen iterative examples of linear time, quadratic time, cubic time, this n, n 

squared, n cube and also a linear example with log n time. So, now let us look at one 

recursive example to see, how we would try to do this when we have the recursive 

solution. So, we would not look at a formal algorithm, but rather than formal puzzle. So, 

this is a well known Towers of Hanoi. So, in the towers of Hanoi person we have as we 

seen this picture here, we have 3 wooden pegs which we will call for the moment A, B 

and C. 

So, we have takes A, B and C and our goal is to move these n disks from A to B. So, the 

thing that we are not allowed to do is to put a larger disk on a smaller disk. So, if we take 

the small disk and move it here. So, we move the first disk here, then we must take the 

second disk and move it there, because we cannot put the second disk on top of the first 

disk. So, the goal is to do this in an effective way. 



So, the actual goal is to move everything from A to B and this is are intermediate thing, 

because as we saw, we move the first disk from A to B we are struck, we cannot move 

anything else I ((Refer Time: 10:09)). So, you must use C as a kind of transit to take 

temporary oxitory peg in order to do this job. So, if you have not seen this problem 

before, you might want to think about it in a spare time, but this is a very classical person 

that it has a very standard recursive solution. 
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And the standard recursive solution is the following that you first assume that you know 

how to solve the problem for n minus 1 disks. So, at this moment you want to move n 

disks from A to B. So, what we do is you first move n minus 1 disks. So, you have on A 

only the bottom disk left and you have now B empty and you are move all the other n 

minus 1 disk to C. So, there are now n minus 1 disk here. So, you are assume that you 

can do this using B as my transit pegs. 

So, now I move things from A to C, now what I do, then move this disk here. So, I now 

have disk here and I no longer have anything here. So, now, I have one biggest disk on 

B. So, I can put anything on it and I have n minus 1 disk on C. So, what I do is I apply 

the same algorithm for n minus 1 to move things from here to here using my A as my 

transit pegs. 

So, this the recursive way to solve the problem, you move n minus 1 disks A to C, move 

the biggest disk from A to B and then move n minus 1 disk, back up C to B. So, the 

question we want to ask us I suggest, how many times to be move disks in this 



procedure? 
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So, supposing you write M of n to indicate the number of moves we need to transfer n 

disks from one peg to another peg. So, what we have seen is that in order to transfer n 

disks, we first transfer n minus 1 disks from A to C, then we transfer one disk from A to 

B and then n minus 1 disk back from C to B. So, it is M of n minus 1, this is to transfer n 

disks plus 1 for that 1 disk in an M of n minus 1. So, this I can simplify as 2 times M of n 

minus 1 plus 1. 

So, M of n in general is 2 times M of n minus 1 plus 1 and if I have only one disk to 

transfer, then there is no problem we can do it directly one steps. So, M of 1 where n is 

equal 1 is 1. So, this kind of expression of describing M n recursively in terms of smaller 

values of capital value, this called a recurrence. So, we have a recursive expression for M 

n, now we have to solve this. So, where we are going to solve this is to use a mostly 

repeated substitution, we are going to repeatedly use the same rule to simplify this 

expression, until we reach everything in turns M 1 and then we can plug in the value. 
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So, we start by the basic expression. So, M of n is 2 times in n minus 1 plus 1, now what 

we do is we substitute for M n minus 1 the same expression in term that n minus 2. So, 

M n minus 1 by the same expression, it is 2 times M n minus 2 plus 1, because in general 

for any M we have n minus 2 times M of n minus 1 plus 1. So, this is a general 

expression. So, we are taking... 

So, we do this and we simplified, we get two terms 2. So, we get 2 square coming from 

this and n minus 2 and then we take 2 times 1 that gives us this 2 plus 1. So, we have just 

rewritten this as 2 square n minus 2. Now, again if you take this expression 2 times M n 

minus 2 that becomes 2 times M n minus 3 plus 1 and then this 2 square plus 1 is, this 2 

square remember is 4. So, this I get 4 inside and 2 squared times 2, 2 cubes. So, I get 2 

cube M n minus 3 plus 2 square plus 2 plus 1. 

Now, you can see that if I do this k times I will have 2 to the k M of n minus k. 

Remember, everywhere I have this and I have this, this is the same number and this is 1 

plus 2 plus 4, in next time will be 1 plus 2 plus 4 plus 8. So, this is actually 2 to the k 

minus 1 to this is nothing but, 2 cube minus 1 it is nothing but, 2 squared minus 1. So, in 

general after k steps I had this, now when I do this n minus 1 times then n minus n minus 

1 is nothing but, 1 n minus n plus 1. 

So, if I do this 2 n minus 1 time k n minus 1 then n minus k becomes 1 and this element 

n minus 1. So, since n minus 1 is 1 I can this omitted from the since. So, I have 2 to the n 

minus 1 plus 2 to the n minus 1 minus 1. But this is nothing but, 2 times 2 to the n minus 



1 which is 2 to the n. So, I can combine these are 2 to the n. So, therefore, this skips as 

by this repeated expansion, substitution whatever you would like to call it. 

We have that M n minus M of n is 2 to the n minus 1 in other words, it takes an 

exponential number of steps in order to solve this puzzle. So, there is a very famous story 

by authorship clock, which talks about this some temple word these pegs are there and it 

has 64 such disks and it says that the world will come to an end when the 64 disk are 

transfer. So, you can thing about how much time it will take to transfer 2 to the 64 disks, 

in order to solve the puzzle with 64 disks. 

Remember, we said that 2 to the 30 is about 1 billion. So, this the enormous amount of 

time I do not think you really need to worry about this as you serious problem if that is 

read the case. 
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So, to summarize we have looked at some examples just to illustrate the flavor of how 

we apply the concepts we are studied in terms of ago in an actual algorithm, how do you 

look at an algorithm actually extract it is complexity. So, for in iterative program 

basically focus on the loops, because the loops I what take of the time and you have 

some times to be update clever about trying to understand, how many times loops 

executes, where recursive programs we show on the one example, you will see more as 

we go along. 

But, the main idea is you express the time complexity for program as a recurrence, you 

write t of m the time taking for m steps, in terms of a smaller value which is obtain from 



the recursive call. So, for the Hanoi case we had n and n minus 1. So, in order to solve 

the problem for n disks we need to solve it problem twice for n minus 1 disks. We will of 

course, find examples will do not fit any of these, it will not be a simple loop that we can 

calculate and then we will have to be a little more careful about how we actually count 

the operations. 

So, in a sense actually estimating the efficiency when I do this, it is really like 

accounting. So, you have kind of keeping track of all the basic operations and you have 

to do a good job of making sure that you do that to keep track of them in the best 

possible way. So, that you get an actual picture of the arts. 


