
Design and Analysis of Algorithms 

Prof. Madhavan Mukund 

Chennai Mathematical Institute 

 

Week - 08 

Module - 05 

Lecture - 54 

Reductions 

 

We have seen that we can use linear programming as a technology to solve a  

number of problems and formally this involves what we call a reduction. 
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So, rather than reducing to linear programs, let us look at how we can actually reduce the 

network flows which we saw already could be reduced linear programs. So, here is a 

problem which seems to our nothing to do with flow. So, we have some course allocation 

to be done in a school, we have a collection of teachers and we have a collection of 

courses and each teacher as indicated the preference of which courses he or she is willing 

to teach. 

So, here we have 4 teachers Abbas, Chitra, Madan and Sunitha and we have four courses 

Math, History, Biology and Economics. So, Abbas for instances he is willing to teach 

History and Biology, so that is these two edges, so this indicates that Abbas is with 

teaching these courses. Similarly, for a since if we can look at Madan, Madan is happy to 

teach History or Economics. So, each teacher has indicated as a collection of courses that 

he or she is willing to teach. 



Now, what we have to do is allocate theses courses to the teachers. Obviously, each 

course is going to be taught by exactly one teacher, but also we would like that each 

teacher teaches only one course and that course should be something that the teacher is 

willing to teach. So, we would not like an allocation for example, which ask Abbas to 

teach Math, because he is indicated that he is not comfortable in teaching Math. So, we 

want to find such an allocation that each course is taught by a single instructor, each 

instructor teaches only one course and that is a course which he or she is willing to teach. 
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So, this is what is called as a matching problem, in particular it is called bipartite 

matching. So, what is a bipartite graph? Bipartite graph is which one in which the 

vertices come in two groups which we called v 0 and v 1 and all the edges go from v 0 to 

v 1. So, there are no edges inside v 0, so there are no edges inside v 0. So, this is an 

example here, so this program to the teachers are v 0 and the courses are v 1, now there 

are no edges between courses, there are no edges between teachers, all the edges are 

from a teacher to a course. 

Now, what we have asked is to find an allocation. What will an allocation do? An 

allocation will pick an edge and say for instance that Abbas will teach History. And once 

Abbas is for been assigned History, then this means that this edge cannot be taken 

anymore, because Abbas cannot be assigned anything else, it also means that this edge 

cannot be taken, nobody else can get assigned this, this edge cannot be taken. 

So, we want to find edges, such that no two of them share an end point. In this example, 



if two of them share an end point on the left, it means that the same teacher is being 

asked to teach two courses. If that is two edges share an end point on the right, it means 

that the same course has been taught to two different teachers, either of it is which we 

want. So, you want a matching, we want a matching which is a subset of edges, so that 

no two of them share an end point. 

And in particular, if we have an equal number of nodes on each side in a bipartite graph, 

then we can expect or hope that everything on the left is matched to something on the 

right. If we do not have an equal number of course, something has been left out. But each 

edge would match out two people, suppose we have a five teachers and four courses, 

then one teacher will not teach a course or we have four teachers and five courses, then 

some course will not be taught unless the teacher take two courses. 

But you have four teachers and four courses, you could ask whether there is a way of 

matching them up, so that every teacher teaches a course and every course is taught by a 

teacher. This is what is called a perfect match. So, what was this going to do with 

network flows? 
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So, here is how we can answer this question using network flows. We add a spurious 

source node feeding into the teachers and we add a spurious target node, a sink node 

coming out of the courses. So, implicitly all are edges are now going from left to right, 

so we have the direction, so we are trying to flow something from left to right. Now, 

what we want is to assign capacity one to everything, so every edge in this has capacity 



one. 

So, supposing we find a maximum flow, so our maximum flow will select some subset of 

these teachers, hopeful all of them. Because it is a flow that flow will go into a teacher 

and out of a teacher, so I will select one of these edges, so this one. And therefore, now it 

will flow from this out here, now because the output can only take one, I can only flow 1 

from History to the sink, it cannot allow another thing to coming from here. 

So, if I had a flow 1 here and flow 1 here, then 2 would have to flow to the History, but I 

have got it. So, I putting a flow capacity of 1 on all the edges and I am sure that exactly 

one teacher and one course can be selected in the matching. And now, if you maximize 

this flow, it maximizes the number of teachers who are connected to their courses and 

therefore it maximizes the matching. So, we have managed to take a problem involving 

something very different involving graphs and modulate it using network flows. 
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So, this is a general example of what we called a reduction. So, we want to solve a given 

problem, problem A, but we do not know how to solve it, but we do know how to solve 

another problem B. So, in our case this is matching and this is flow. So, what we do is we 

transform that problem from matching to flow. So, we take our matching problem and 

then we add a source, we add a sink, we add capacities convert it into a flow problem. 

So, having converted it into flow problem, we solved it, so this is the diagram shown 

below, we have an algorithm for B. So, now, we have a matching input, we converted it 

into a flow input, this is a flow solution that comes out and now we look at the flow 



solution wherever, we see a one that is our matching, whenever we see a zero that is not 

it our matching. So, from that we get a matching solution. So, we can involve the 

solution from the inner problem to get a solution to the outer problem. So, this is a 

reduction. 
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So, we say that a reduces to B. To solve A, I can convert it to B and solve B in state. And 

therefore, if I have an efficient solution for B and if this conversion process is efficient, 

then the process is setting up the problem for B and interpreting the answer are both 

efficient. Then, that is the efficiency of the algorithm for B compose with the efficiency 

of the pre processing and the post processing step will give us an efficient algorithm for 

A. So, without directly attacking A, I indirectly found an efficient algorithm for A by 

exploiting the existence of an algorithm for B. 
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So, as we said before our example that we did in this lecture says that bipartite matching 

in this way reduces to match flow. Now, what we saw, last time it was a max flow itself 

reduces to linear program, but the key is that the pre processing and the post processing 

must be efficient. When we went from max flow to linear programming, what we did 

was we introduce one variable f e for each edge e. So, therefore that is an efficient 

translation, because it produces the linear program whose size is comparable to the input 

graph of max flow. 

Earlier, we had seen a example of network bandwidth, where we produce a linear 

program which require one variable per path in the network, that could not be an efficient 

reduction, because that would require an exponential amount of work to construct the 

linear program and to read the program. So, therefore, we have to be careful in order to if 

we had, only attention you solving the problem is one thing to convert a problem, but if 

we want to exploit the efficiency aspect, then the translation two and from the inner 

problem must also be efficient. 
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So, we will see that another interpretation of reduction also useful for us. So, what we 

have seen that is that if A reduces to B, then B is efficient then this implies that A is also 

efficient, because I can use the solution for B also a solution for A. But supposing I have 

that this is not efficient or not known to be efficient, if I have some reason to suspect that 

there is no efficient way to do A, then if can show that A can be reduced to B, then this 

also means that B cannot be efficient. 

Because it could be done efficiently, we know that we can do way efficiently, but we 

have a reason to believe that A cannot be done efficiently. So, reduction can be used 

depending on the way in which we exploited either to transfer a positive result from B to 

A or a negative result from A to B, that is A is not known to be efficient, B also is not 

known to be efficient. 
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So, in this last couple of lectures what we have seen are two, what I would call Big 

hammers. So, we have linear programming and network flows. We actually express 

network flows in terms of linear program, but network flows independently are a very 

powerful modeling formalization. So, many algorithmic problems can actually be 

reduced one of these two, either you can set up variables in a set of linear program or you 

can take a graph erratic problem and modulate it using flows. 

And the nice thing about this is that linear programming and network flows are both very 

standard problems for which people have interested, have lot of time to write general 

purpose tools which solve this problem. So, you can set up an arbitrary linear program, 

arbitrary network flow give it to the too, then the tool will give you an answer. So, you 

have efficient of the self implementations. So, in many practical situations rather than try 

and solve an algorithmic problem directly, it does often make sense to think of whether it 

can be modeled as a linear program or a network flow and then use an off-the-shelf 

package to solve it. 

But of course, you have to be able to express the problem in terms of one of these things. 

So, in order to understand whether you can do so or not, you need to spend some time 

analyzing what can and cannot be express the linear programs. In linear program, the 

crucial thing is that the constraints must be linear functions. Sometimes, your constraints 

which referred to the product to two variables, this is not a linear function. 

Similarly, in network flows you have to make sure that you can actually modulate as a 



source to target flow, it cannot be something going around and around in the network. 

So, within these constraints; however, both of these are extremely useful generic 

problems for which efficient solutions do exist and which cannot be exploited in a large 

number of situations to solve the given problem at hand. 


