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So, continuing our discussion about efficiently computing recursive functions, let us look 

at the problem of computing grid paths. 

(Refer Slide Time: 00:09)  

 

So, we have a grid, a rectangular grid, where we start walking at the bottom left corner, 

and the rule is that we can only go up or right. So, we want to start at the bottom and we 

want to reach the top right corner. So, we can number the coordinates. So, the bottom 

right corner we call (0,0). This particular grid has got 5 columns and 10 rows. So, the top 

right corner is (5, 10). And the question that we ask is how many different ways are 

going, are that go from (0, 0) to (5, 10). 

So, what do we mean by different ways. Well, here for instance is one grid path. This 

blue line takes us up from (0, 0), then right, then up, then right and so on. So, this traces 

out one particular sequence of edges along this grid taking us from the bottom left corner 

to the top right. So, we could, of course choose a different one, which in this particular 

one the red one and the blue one are completely disjoint. They do not use any of the 



same edges, but in general, I could have paths which overlap with the other ones. So, this 

yellow one partly overlaps with the blue at the middle, over here, and then it overlaps 

with the red one over here, right. We want to know how many such different paths are 

there from (0, 0) to (m, n). 

(Refer Slide Time: 01:28) 

 

Now, it turns out this problem is actually a very classical problem in combinatorics 

counting. So, the way to analyze this is to see, that if I want to go from the bottom to the 

top, then I must, on the, in one-dimensional I must go from 0 to 5. In the other 

dimensions, I must go to 0 to 10. So, totally I must make 15 steps, right. There is no 

choice, I must walk 15 segments. 
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In general, if I am going to some (m, n), I must walk m plus n segments. Now, if I have 

these 15 segments and I am going to (5,10), that means, I have to go right, 5 times, right, 

and I have to go up 10 times. Now, in which sequence I do these rights and ups is what 

determines which path I take, right. But every path will have exactly 5 right moves and 

exactly 10 up moves, right. So, there will be 10 up moves and 5 right moves. 

So, now if I take this and I think of this as an overall thing saying this is my 1st move, 

this is my 2nd move, this is my 3rd move and so on, up to the 15th move. Then if I tell 

you that you moved right, I moved right at these positions, at some five positions, then 

automatically I must have moved up at the remaining positions because I have to do 

exactly 5 and exactly 5 right and 10 up. So, therefore, all I need to do to determine 

exactly which path I am taking is to fix the position of the 5 rights moves among the total 

15, right. So, among 15 positions I choose 5. This is usually written as 15 choose 5, right. 

So, this is a very standard, combinatorial thing, 15 choose 5 n choose k is n factorial 

divided by k factorial into n minus k factorial, right. So, 15 factorial divided by 10 

factorial times 5 factorial, it happens to be 3003 ((Refer Time: 03:24)). So, for this 

particular grid there are 3003 ways. 

Now, of course, instead of choosing the right positions I could also have told you the 10 

positions where I moved up, that leaves 5 open positions where I ((Refer Time: 03:39)). 

So, this would give us 15 choose 10, and so it is not a coincident that 15 choose 10 and 



15 choose 5 are in fact the same expression. So, whether you choose to compute it as 15 

choose 5 or 15 choose 10, it does not matter. So, in general it is going to be m plus n 

choose m or m plus n choose n where I am going from (0, 0) up to (m, n), right. I have to 

make m right moves and n up moves. So, I need to choose m out of m plus n total moves 

or n out of m plus n, both of them will give me the same expression, because that is why, 

n choose k, n choose k is n factorial k factorial n minus k. So, if you just exchange k and 

n minus k you get the same expression.  

(Refer Slide Time: 04:31) 

 

So, that is all very well, but what, for example, if this is not a perfect grid. Supposing we 

have some intersections, which are blocked. So, in this particular case, if you look at this 

intersection, which is (2, 4), right, it is 1, 2 and then 1, 2, 3, 4. So, we have put a black 

mark to indicate that for the moment, you cannot go through it, right. So, any part that 

goes through (2, 4), should not be counted among the valid path from (0, 0) to (5, 10).  
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So, the blue path that we had drawn before actually goes through this intersection. So, 

this path is no longer a valid path. The red path is ok, because it bypasses it, but the 

yellow path unfortunately also goes through this intersection. So, of the three paths, that 

we had seen so far, two actually do not go through. So, the question now is, out of those 

3003 paths that we said were there, from (0, 0) to (5, 10), how many of them are still 

valid if you are not allow to go through this intersection.  
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So, it turns over that actually this also has a combinatorial solution. So, what you can say 

is that in order to go from here and if I want to avoid a block intersection. So, let me see 

how many ways are there of going through it and just remove them, right. So, what I will 

do is, I will say, that every path it goes through the current block intersection is a path 

from (0, 0) to 92, 4) followed by a path from (2, 4) to (5, 10) because it goes through (2, 

4). So, we can think of this as a smaller grid from (0, 0) to (2, 4), right. 

So, if we solve, this is, this general m plus n m plus n choose n, right. So, I get 6 choose 

2. So, I get there are 15 ways to go from (0, 0) to (2, 4). Likewise, if I consider this grid, 

then this is 3 and this is 6 because it was 10 and 5, I have done 2 and 4 respectively. So, 

after 2 there is still 3 left horizontally; after 4 there is still 6 left vertically. So, this is like 

going from a new (0, 0) to (3, 6), right. So, there I get 6 plus 3 choose 3 and this turns out 

to be 84. 

Now, any part, which comes to the bottom 2 to 4 followed by any part, that goes from 

there to the top is a valid path passing through 2 to 4. So, I multiply these two numbers, I 

have to take 15 times 84 and again 1260. So, this is a total number of paths, which are 

going through (2,4), but I do not want paths going through (2,4). I am saying, that paths 

going 2 to 4 are not allowed. So, I must count all these parts as invalid. So, I take the 

original 3003 subtract. So, I take 3003 and I subtract 1260 and I get 1743, right. So, 

taking the combinatorial exercise to the next step. I can find out how many paths go from 

the origin to the given point on the top right provided one path one position is blocked. 
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So, this imperfection could be more complex. I could have two positions blocked, right. 

In this case, the blue, yellow and red paths are all invalid because the red path also 

happens to get blocked. So, now I have blocked at (2,4) and also at (4,4), right. So, if I 

count all the paths going through two, (2,4), which I have already done, I can subtract 

this. Similarly, I can compute all the paths going through (4,4) and subtract those. 

But now what happens is, this yellow path is subtracted twice because it is part of the 

paths going through (2,4) and part of the paths going through (4,4), right. So, I have 

accidentally removed it twice from my total, so I have to put it back. You have to now 

compute those paths, which go through both the intersections and add them back and this 

combinatorial is called inclusion and exclusion. You come across it also sometimes when 

you do Venn diagram, when you do sets. 

If you want to find out, now you say, how many people are, how many sets have one 

element, how many sets are ((Refer Time 08:33)) intersection, how many sets you have, 

you know, you are, students taking three subjects, English, history and physics, and then 

so many taking English and history, so many taking history and physics and so on. So, 

when you do that kind of counting you will exactly do this inclusion exclusion, right. So, 

as we get more and more messy grids, this combinatorial question becomes more and 

more complicated to solve this way. 
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So, let us look for a better solution. So, as you might guess, since we are looking at these 

kind of inductive formulations and recursive programs, what we are really looking for is 

the inductive formulation of the grid path. So, let us ask ourselves the following 

question. How do I get to a point (i,j) on the grid? 

So, I claim, that given our structure, which is, that we can go right or we can go up, there 

are only two ways I can come here. I can either come right from the neighbor on my left. 

So, from (i,j minus 1) I can make one step right and come to (i,j) or from (i minus 1, j), I 

can go up once there. So, if I have any paths, which starts at (0,0), right, any path, which 

somehow comes to (i,j -1), then by taking one, exactly one step, that path becomes one 

path to (i,j) right. So, every path from (0,0) to i minus, (i,j -1) can be extended in a 

unique way to (i,j). Likewise, any path, which comes from (0,0) to (i-1,j) can be 

extended in the unique way, right. So, if I count the task coming to the two neighbours, 

then each of those paths can be extended to reach the current node. So, therefore, I get 

the inductive formulation as follows.  
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So, let us write paths (i,j) to denote the number of paths from (0,0) to the current point 

(i,j). So, what we have just seen from our inductive analysis on the problem is, that if you 

are at (i,j), then the paths come from left or from below. So, the paths to (i,j) are the sum 

of paths to (i minus1,j) and the paths to (i,j minus1). So, there are, of course, some 

boundary conditions. 

So, if you look at our grid, in general, then if we look at the leftmost column, let us start 

the bottom row. So, we start the bottom row, right, then we know, that this is of the form 

(0,0), then (1,0) and so on to (5,0), right. So, anything of the form (i,0) derives its value 

only from the left because there is no corresponding row from the left. Similarly, from 

the leftmost column, from this (0,0), (0,1) and so on up to (0,15). And now, there is 

nothing from the left. So, I can only get it from j-1 from the row below. 

And finally, you have to ask ourselves what happens at the initial conditions. So, if I am 

at (0,0) and I want to go to (0,0), how many ways are there? Well, this is a trivial path, 

there is only one way, by just staying there. It is important that it is not 0 because 

remember, that if it is 0, then everywhere you are just adding things and nothing will 

come, you will get no paths. So, it is important, that there is exactly one path from (0,0) 

to itself. 
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So, how do we deal with holes in this setup? That is easy, we just say, that whenever 

there is a hole at a given point we just declare parts of ((Refer Time: 11:52)) be 0. In 

other words, if there is a hole at some point, then this thing is going to contribute 0 

regardless of what is above or below. So, if I come, if I have something coming from 

here and here I will just ignore it and say this is 0. And likewise, when I compute thing 

about there will be some value x coming from the left. So, this will just be x plus 0. And 

similarly, over here there will be something coming from below, say y, and this will be 

0+y, right. 

So, any hole will just have by declaration paths (i,j) equal to 0 because nothing can go 

through it and this will automatically propagate to its neighbors correctly. The remaining 

inductive ((Refer Time: 12:27)) exactly as before, right. So, if it is not a hole, it depends 

on its two neighbors. Then we have the bottom row left column and the origin as base 

cases. 
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So, the difficulty with this calculation is the same as involved with the Fibonacci, which 

is, that if I have a particular calculation, say for example, supposing we start a recursive 

calculation at (5,10), then this will ask for (4,10) and (5,9). Now, these in turn will both 

ask for (4,9), so (4,9). if I just evaluate this paths function recursively, the way it is 

returning, the inductive definition, it will end up calling paths of (4,9) at least twice from 

this ((refer Time:13:12)) and this wasteful recomputation will occur throughout and we 

will get an exponentiation number of calls to paths. 

So, we have seen before, we have two technologies to deal with this. So, one is 

memoization where we just make sure that we have never paths (i,j) the same value of i 

and j more than once. The other way is to, is to anticipate the sub problems, figure out 

how they depend on each other, then solve them directly iteratively in a suitable order 

and this is what we call dynamic programming. 
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So, how would we use dynamic programming on the grid? So, this is our grid with the 

two holes at the (2,4) and (4,4). The first thing is to identify DAG structure of the 

dependencies, right. So, it is, we know, that every (i,j) depends on, it is left and bottom 

neighbor. So, this is how we do the DAG. If you remember, if these depends on the two 

values, left and below, we draw an edge from the left to this node and from below to this 

node. 

(Refer Slide time: 14:10) 

 



So, this is the DAG structure, right. So, ((Refer Time: 14:11)), the DAG structure. So, 

the DAG structure goes naturally from the bottom left to the top, right. So, this is the 

only 0 in degree node, this DAG. So, if you want to do a computation of this grid to grid 

paths directly using dynamic programming, the only place we can start is (0,0), right. 
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So, we start at (0,0) and we fill the value there, which is 1. And now, we observe, that we 

have two possibilities. We can go to the right or we can go up because these two 

dependencies are now removed. So, let us just go row by row. So, if we do this value, 

then automatically this dependency go. So, we will be able to do this value, when this 

will go, so we can do this value and so on. 
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So, we can compute the entire bottom row and these are all inherited from the left using 

our base case, right. So, and it is very clear, I mean, intuitively there is only one way to 

get any of these places, which is just to go straight from left to right, no deviation is 

possible. So, there is only one path to every node at the bottom node. 

Now, we can move up one row. We can see, that this node in the first row from the 

second row is now available. It is already available, but if we do that we can also do that 

((Refer Time: 15:22)) and the node to its right and so on, right. So, we can fill the entire 

second row and at each point we are just adding up. So, 2s, 2 plus 1 is 2, 1 plus 3 is 4 and 

so on. Likewise, we can do the next hole. So, for example, 6 plus 4 is 10 and so on. 

Likewise, you can do the next row, 20 plus 15 is 35. 

Now, we come to the holes, right. So, at the holes we said, that these will be 0 regardless 

of what comes from below. Even though there is 10 coming from below, this first hole 

must be 0, 35 from below, the hole must be 0. So, we just compute this row exactly as 

before except that the holes we input as 0 regardless of what is coming into it. We do not 

count it as 5 plus 10, we just put 0. We do not count this hole as 20 plus 35, we put 0. 
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Now, when we go to the next row, likewise this 0 contributes only 0. So, above it, 

because no paths can come through this, this direction, the number of paths coming here 

is only 6 coming from the left. So, ((Refer Time: 16:12)) number of paths coming here is 

only 26 coming from the left. So, the number of paths, which are coming to this point 

could not come from there. So, this 20 is copied there, this 56 is copied. So, we can do 

this row by row. 

And if you can just enumerate every row like this by copying, adding up the values to the 

left and below and we will find, that there are actually 1363 paths with these two 

obstructions. And if we move these obstructions around, we can redo these calculations, 

it will be as efficient, we do not have to worry about this inclusion and exclusion. So, 

this is one way to do the dynamic programming, but remember any topological sort will 

work. 
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So, we could instead start with 1 and go column by column, right. So, we can go up and 

fill that and then we can fill up the entire first column. The first column will again be 

only once because there will be only way to do this. 
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Having filled the first column, now we can fill the second column and then you can fill 

the third column and the fourth column and so on. And obviously, this is only a different 

way of enumerating the values. The value is going to change. So, we should eventually 

end up with the same values at every point. 
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And finally, you can also do it by DAG. So, notice, that when I do this one, then these 

two points now are 0 and degree nodes. I can do both of them. Now, I have these three 

points, a 0 and degree mode. So, I can do all three of these. Then I have these four 

points, 0 and degree node. So, I can do all of these and so on. So, this is just to 

emphasize, that the choice of topological sort is entirely up to you. Very often, it will be 

more complicated to program this kind of diagonal things 

 So, usually what tries to do, it is a row and column, but any topological ordering of the, 

of the base values can be used in order to compute them. All you need to know is, when 

you come a node, the value you want to compute, all its dependencies must have already 

been computed, that is what this DAGS structure gives you, right. So, the sub problems 

form a DAG and you have to navigate your way through the DAG in a most effective 

way as far as programming it. It is usually by a row or a column in a table, but it could be 

the diagonal also. 
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So, finally, before we conclude, let us just look at an instructive illustration of the 

difference between a memoization and dynamic programming. So, so if we have a bunch 

of holes which are along the border, then intuitively what it says is, that if I start from 

here and I go anyway like this, I am going to get stuck, ok. So, if I start my memoization 

from there, then everywhere it is just going to see a 0. So, all these values are going to be 

0, and memoization is not going to look further around these. 

So, memorization, I claim, is only going to look along this outer boundary, only these 

grid points will actually be computed by memorization. Whereas, if I do dynamic 

programming, I will start form here and I would blindly fill up. Only when I reach the 0, 

I have realized, that the values are kind of computed inside the grid, do not worry, right. 
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So, there is this entire shaded region in this grid whose values are not needed because 

they cannot contribute to any path from, from the bottom to the top because every path 

going through them, you get blocked by one of these holes, right. Whereas, the dynamic 

programming is now going to blindly compute the values for these points even though 

they are useless memorization, will not because it only computes by need and it will 

never reach these points, right. 
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So, therefore, the memo table will have a linear number of entries, right. It will have, 

say, 2 m plus 2 n entries. It will only have the outer boundary of this grid ((Refer Time: 

19:46)). So, it will have linear number of entries in terms of the two dimensions, whereas 

dynamic programming will have n times an entry will have. Every grid point will be 

computed in the table even though most of them are useless. 

So, in a sense, in this example, dynamic programming is wastefully computing values, 

which we can by little bit of analysis realized will never be used because it is just blindly 

computing every sub problem on its way from the origin to the top. However, as we said 

before, dynamic programming is iterative. It is going to be just the simple, memoization 

is going to be recursive. It is going to be optimized to not make the same recursive call 

twice, but nevertheless it is recursive and recursion carries a cost in terms of execution in 

a programming language. 

So, therefore though this looks like a wasteful dynamic programming strategy in case the 

holes are distributed in a bad way. Actually, it does not matter. It usually turns out, that a 

dynamic programming implementation will be usually more efficient than a 

memoization implementation. So, the memoized implementation is easy to do because 

we know, that we can go from an inductive definition directly to a recursive program. 

And we saw last time, that there is a generic formula, a recipe to make any recursive 

program memorized. You just have to insert a couple of steps saying, look up the table 

and feed the table, right. So, therefore, getting a memoized implementation is very easy, 

getting a dynamic programing implementation requires some analysis of the sub 

problems and figuring out a good order in which to evaluate the sub problems. So, it is 

more work, but this extra work usually pays off, because then you can get an interactive 

computation of all the sub problems rather than a recursive one. 


