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For the last example of a greedy algorithm in this course, we will look at a problem 

communication theory, we will look at the problem of Huffman Codes. 
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So, when we communicate, we have to transmit information from one place to another 

place. So, we might be working in some language like English, Hindi or whatever, but if 

were using computers for example, to transmit our data, we know that they must send 

this information in binary strings. So, our typical goal is to take an alphabet, and then 

encoded it over strings of 0 and 1, so that at the other end, we can decoded and recover 

the message. 

So, if you have say the 26 lower case letters a to z, then it is easy to see that we need to if 

you want to encode each letter as a fixed sequence of 0’s and 1’s by fixed length, then 

we will need to use 5 bits for letter, because if you use only 4 bits, we can only get 16 

different combinations, with 5 bits we can get 32 different combinations. So, now a 

natural question is, can we do something clever about using different length encoding for 



different letters, so that more frequent letters get send with shorter inputs. So, can we 

optimize the amount of data we actually transfer in order to send the message from one 

place to another? 

(Refer Slide Time: 01:24) 

 

So, this brings us to the idea having a variable length encoding, where we use different 

strings of different length for different letters in the alphabet. So, one of the most famous 

examples of the variable length encoding is the classical Morse code, which is developed 

by Samuel Morse from the telegraph who is invented. So, this was done using a 

mechanical device by clicking on a contact and it will produce long and short clicks. So, 

the short clicks are called dots and the long clicks called dashes, we can as well think of 

them as representing the bits 0 and 1. 

So, in the Morse code encoding, different letters do have different encodings and in 

English e is the most frequent letter and t is another variant frequent letter. So, Morse 

assigned them codes of a dot, that is 0 for e and a dash, that is 1 for t, then a Morse took 

other frequent letters, such as a and gave them two letter encodings. So, a is encoded as 

dot dash, where 0 and 1. 

Now, the problem with Morse’s encoding is that it is ambiguous, when you come to 

decoding. So, for instance, if we look at the word, the sequence 0 1, then we do not know 

whether we should interpret each of these as a one letter code and get e t e t, all for 

instance we should think of this as 2 two letter of codes and get a a and so on. So, 



depending on whether we stop it is 0 or extends 0 to 0 1, we can get many different 

interpretations. 

Now, in practice in Morse code, what we use to happen is that the operator gives a slide 

pause indicating the end of the letter. So, therefore, effectively Morse code is not a 

binary code, but it is a three letter code 0 1 and pause, now we are using of course, 

digital computers, we do not want to go to three letters. So, we want to efficiently do 

these using just two letters. 
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So, in order to make a variable length code an unambiguous decodable, we need what is 

called a prefix quantity. When we read through a sequence of 0’s and 1’s, we should be 

an ambiguously clear, whether we have read a letter or there is more to read. We should 

be like the earlier case, where we have read 0 and we do know, whether we stop at 0 and 

call it an e in the Morse code setting or we want to call it an a which is 0 1. 

So, we are going to use this capital letter E to denote the encoding the function. So, E of 

x is the encoding of the letter. So, here is an example, so we have five letters a, b, c, d, e 

and now, you can check that none of these encodings can be extended to anything. I do 

not have, if I see 1 1, it must be an header, no other code which starts with 1 1. If I see 0 

0 it is not a code, but 0 0 1 is a code, so 0 1 cannot be extend and so on. So, each of these 

cannot be extended to be the code of any other letter. So, now when we get along 



sequence like this, there is no doubt, the first point when I completed a letter is 0 0 1 and 

this is a c. 

The next point when I complete the letter is three 0’s and it is an e, then I read another c 

and then an a and then a b. So, if we have the prefix code property, that is no letter is 

encoded to a string which is the prefix of the encoding or some other letter, then we have 

unambiguous decoding possible and this is very important. 
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So, our goal is to find optimal prefix codes. So, we need to talk about what we mean by 

optimality. So, remember we said that our goal is to assign shorter codes to more 

frequent letters. So, somehow we have to determine, what are more frequent and less 

frequent letters? So, people have measure the frequency of the occurrence of each letter 

and different languages, so this is a very language specific thing. 

So, this optimality is something which is optimal for English, may not work of French or 

any other Spanish or something. So, you take a large body of text in a particular 

language and you count the number of a’s b’s c’s d’s and e’s, and then you just look at 

the fraction, out of the total number of letters across all the steps, how many are e’s, how 

many b’s, how many are c’s. So, this is a kind of statistical estimate of the average 

frequency of this. 



So, this frequency would be a fraction, what fraction of the letter over a large body of 

text will be e’s, what fraction will be c’s and these fraction will add up to one, because 

every letter would be one of them. So, the fraction of a is plus, the fraction of b is plus, 

fraction of c is and so on is going to added to 1 and because of this, we can also think of 

this statistical estimate or a kind of probability. 

Let if I give you a random letter, if I look at the piece of text and pickup a random letter 

from the text, what is the probability that x, well it is just be the frequency of x across all 

the text f of x. So, these will added to 1. 
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So, now, we have a message, it consists of some n symbols. So, we have M 1, M 2 up to 

M n, so these are n symbols. Now, we know that if I take a particular letter x, then f x 

fraction of these are x, so in other words, if I take n and I multiply by a fraction is say, if 

I fix is say one third, then one third of n. So, n by 3 of these symbols will actually be the 

letter x and now, each of these x is going to be represented by it is encoding. 

So, supposing it is 0 1 0 then each x is going to represent by 3 bits, so then n into f x is 

the number of times f c x and this into the length of this encoding is going to give me the 

total number of bits taken to encode all the x’s in this message. Now, if I do this for 

every letter, so if I take the summation over every y or every x in my alphabet of n times 

the frequency of the letter times the encoding length of that letter. 



So, this tells me how many bits I need to encode that particular letter, add up all the 

letters, I get the total length of the encoded message. And if I do not include this n, it is 

no to said n it is not a part of the summation, it is an independent thing, it is a fraction of 

any n. If I just look at the total weighted average of two links of the encodings, then this 

is if you study probability theory, what is called the expected length of the encoding. So, 

this is the average number of bits, I use for a letter. 
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So, let us work out how this, so suppose we take our earlier example of 5 letters, now we 

insert some fictitious information about frequencies. So, this all these five values are 

fraction between 0 and 1, you can added to 1. Then if I do this summation over x of f of 

x times the length of E of x, then I have 0.32 times 2, because the encoding of A is two 

letters, then I have 0.25 times to 2, because the encoding E is two letters and so on. 

So, I have these five terms a, b, c, d, e and then I added it up and I get 2.25, so it says that 

I need an average 2.25 bits per letter. Of course, I do not use 2.25 bits per letter, but what 

it says this for instance, if I have a 100 letters, I would expect to see 225 bits in the 

output encoding. Now, a very specific kind of prefix code is the fixed length code, where 

just by the fact that every code to the fixed length, I know exactly where each one th. 

So, supposing I use 3 bits in this case, if I want to fix length code of this, then there are 

five letters, I cannot do it with 2 bits, because I only get four different combinations. So, 

I need 3 bits, if I use some 3 bit code, then every 3 bits will be one letter. So, in the fixed 



length encoding in this, I will use 3 bits for letters, so therefore clearly the number of bits 

per letter is 3, because I am using 3 for every one of them. And so by going to a variable 

length code encoding which takes in to upon the frequency and actually savings it is to a 

sending 300 bits for 100 character, it send into 225. So, we have 25 percent saving, so 

this is what we are trying to get at. 

So, in this example in the previous thing we have two frequencies 0.2 and 0.18, the 0.18 

means d is less frequency than c, but somehow we assigned c to be a longer code. So, 

this violated our basic principle that shorter code should be assigned to more frequent 

letters. So, if you see a pair of letters which are where one is more frequent than other, I 

expected to get a shorter code and I am not done so. 
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So, if I invert that, so supposing I now assign a three letter code to d and a two letter 

code to c, then these two terms change the other terms, though the encoding may have 

differ, the length do not change. So, then I get instead of 2.25, I get on to 2.23, so what 

this say is that looking at different encodings I could get different A B L values, this 

average bits per letter. So, now, our goal is to find an assignment capital E which 

minimizes this quantity. So, in our coding the average efficient is possible. 



(Refer Slide Time: 10:56) 

 

So, to get to this, it is useful to think of these encodings has binary trees, so in a binary 

tree I can interpret directions as 0 and 1, so typically left is 0 and right is 1. So, now, if I 

read of a path in a binary tree, it will also a binary sequence. So, this path is 1 1 1 on the 

right for example and this path program the 0 1 and this path is 0 0 0. Now, if I read of a 

path and then I find the letter of that label, then it is as good as saying that path labels 

that letter is encoded by that path. 

So, here is because e is has the encoding 0 0 0 in the binary tree, I will follow the path 0 

0 0 and labeled that corresponding letter that vertex by e. Now, because it is a prefix 

code, if 0 0 0 labels e, they will not be any code which says 0 0 0 and something more, 

they will not be another label below it. So, these labels will not extend to other label, I 

will not find an f below d, because otherwise it not a prefix code, I do 1 0 and I get a t, 

but I do 1 0 something else, then I get an f. So, the code for f extends the code for d, this 

is not enough. So, in a prefix code this cannot happen, so therefore, all the labels are 

actually at leaf nodes, there it nodes which have are more successes. 
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So, here is an encoding for the other scheme that we had, where we exchanged the values 

are c and d. So, now c has a two letter code and d has a three letter code, this is indicated 

by the in depth now, the depth this is path, the length of the path is the depth of the node. 

So, c in are earlier thing was a depth 3, and now it is a depth 2 and the d was depth 2 and 

now it is a depth 3. So, we want to basically put thing which have higher frequencies, 

higher up in the tree at lesser than. 
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So, having encoded look at are encoding the binary tree, we will now make a couple of 

observation, three observation of bottom which will be useful prove to develop an 

optimal algorithm and prove it is optimal. So, the first thing is that in such a tree, if it is 

optimal, every node will either have no children will we a leaf or it will have two 

children. So, this is what we called a Full. 

So, every optimal tree is full, now is easy to see this, because the supposing the claim, 

we other optimal tree in which somewhere in between, we had a node which had only 

one child. Then, this child can effectively will be promoted, we can remove this node 

completely and we can string the tree along this direction a nothing will change, except 

that the depth of the node is below become less. So, in fact, we will possibly get a shorter 

average bit length then we had, therefore by having a Singleton, either only a left child or 

right child, we cannot the optimal. So, the every node must either 0 or two children. 
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The next property is exactly what we saw the earlier thing, which is that, if I have two 

nodes x and y, such that, x is higher than y, so x is at some level and y is different level. 

Then, x has a shorter encoding then y, this must mean that f of x is at least as much f of 

y, in other word, when I go down the tree my frequency cannot increase, because if f of y 

would bigger than f of x, that if I more wise an x is a mentax. Then, I will just exchange 

is 2, I would find a better encoding by putting y here and x here. 



Because, now if I do f of y time the length of y and the depth y in this tree, then it to 

reduce, because the depth of y is reduce and this is the higher multiply. So, therefore, if I 

had a higher thing below, then I could exchange the letter and get better tree and that 

does not happen in then optimal tree, so then the optimal tree, if I go down the tree, I 

only find lower frequency letters. 
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The final property is to do with leaves at the lowest level, so supposing I have the leaf at 

the lowest leaf, so this is some leaf of a lowest level. So, I know because it is an optimal 

tree, it cannot be a isolated child, it must have a sibling for go and come down, it must 

have a sibling. Now, there are two possibilities, the two possibilities are this is a leaf or 

the other possibility is that, this is not a leaf, the claim if that if it is not a leaf, then it 

must have children. 

So, then there are leaves here which have at the lower level, then x, but x is assumed to 

be a maximum depth d. So, maximum depth leaf cannot have sibling, which is not a leaf, 

because it sibling it would have a children, which have to higher depth. So, therefore, if I 

have a maximum depth leaf in my optimal tree, then we need occur is a pair with another 

maximum depth leaf. 
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And so this is a conclusion in that leaves of maximum depth occurred in pairs and then 

we know that because frequencies keep of dropping as we go down increasing in depth, 

these pairs must have a lowest frequency among the lowest frequencies. So, in order to 

develop the solution, we will use recursion, so what we will do is, we will say, let us 

look in the overall table that we start with and pick two letters, which have the lowest 

frequency. 

So, we can assign them the longest codes, so they can be put at the lowest level and then 

we know that the lowest level leaves at the pairs. So, let us assume that these will be 

paired out, so we will assign these lowest frequency letters x and y, to a pair of leaves 

maximum depth, left and right does not matter, because so the depth that matters. 
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So, now, the recursive a solution will say, that how do a figure of what the rest of the tree 

looks like, well if I have a situation, where I have decided x and y both here. Then, I will 

kind of tree, this is a unit and make a new letter call x, y and give it the cumulative 

frequency effects plus x, y of the old two letter. So, construct the new alphabet and 

which I drop x and y and I add a new composite of hybrid letter x, y; whose frequencies 

going to be f x plus f y. 

Now, recursion fiction, I have a k minus 1 letter alphabet, so I have recursively find and 

optimal encoding of that. Now, before coming to how to adapt the solution, the recursive 

ends when have a only two letters, for two the optimal solution is to build the tree which 

exactly two leaves, label 0 and 1 at the path. So, this is the basic case, if I have more than 

two letters I will recursively construct tree to the smaller thing and then I will come back 

and now, the tree that I constructed I will have some where the leaf label x y. 

Now, x y is not a letter, so what I do is, I will replace this, write new two leaves called x 

and y. So, I will go from the tree over a A prime to a tree over A by doings. So, this is an 

algorithm called by develop Huffman and this type of coding is call Huffman coding. 
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So, let us look at this example that we had earlier, so here the two lowest frequency 

letters d and e. So, we merge them into the new letter d, e and this is a frequency 0.23, 

because it is 0.18 plus 0.05. Now, these two are a two lowest letters, so we merge them 

and we get a new letter c, d, e of cumulative frequency 0.43, which is some of all the 

frequencies are that two values. 

Now, terms out that, these two are the smaller two. So, I is them the letter a, b and now, I 

breast my base case where have exactly two letters. So, I can set of the trivial tree this 

two letters, label 0 and 1. And now I work backwards, so the last thing that I did was to 

merge a and b, now I will take this a and b thing and split it has a and b. 
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I will split a, b as a and b, I will get this print, then the previous step was to combine c, d 

e into c and d, e. So, I am going to the split this c and d, e. 
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And finally, I am going to split this up is d and e. So, this is Huffman’s algorithm and by 

recursively combining the two lowest frequency nodes, and then taking the composite 

node and splitting them back up to it is. 
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So, to show that this algorithm is the optimal, we go by the end of the size in the 

algorithm. Now, clearly when I have only two letters, I cannot do any better than assign 

the one of them 0 and one of them 1, so the base case is optimal. So, we will assume that 

this optimal for k minus 1 letters and now show that also optimal for k letters. 
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So, recall that, we went to k minus 1 by combining the two lowest frequency letters as 1, 

constructing an optimal tree for these smaller alphabet and then expending the x, y get a 

new. So, the claim was when I go from the tree over k minus letters to the tree over k 



letters, the cost is going to increase, but this cost is going to be fix by whichever letters I 

choose to contract. 

So, if I choose x and y to merge to go from T to T prime, then the amount by the which 

the average bits per letter is going to change is exactly the frequency of this combine 

letter f x y. So, the deterministically fix by which one I choose, then even though I do 

know the cost of the trees directly, I can tell you that the cost is going to be different by 

this some after. 
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This is not very difficult to prove, so in that summation that we had, so in the tree 

notation remember this depth of z is the same as the length of the encoding of set, 

because the depth exactly a reflex the length of the string use to encoded. So, this is our 

A B L calculation. Now, for every node other than the x y and x y, there are exactly at 

the same position in T and T primes. 

So, this these sum summation with terms do not change, so the only changes are these 

three nodes. So, what I will do and going to T prime to T is I will remove this 

contribution of the composite letter x, y. And then at a next level which is 1 plus the 

depth of the x y, I will add the node f x and I add the node f x and I will get the 

components x y, f x times that plus x y times, I am subtracting this amount in the left, 

then I am adding this amount to the right. 



So, now, actually f of x y is nothing but f x plus f y. So, this left hand side term is 

actually this right hand side component depth of x y, times of x plus y. So, I am 

subtracting this and adding it back, so the cancel each other, so therefore, all am left with 

is one times that the x plus y which is f x by f y or f x y. So, therefore I am going from T 

prime to T, the crucial thing is only depend for which letters I have contract, that fix is 

the difference unique. 
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Now, let us assume that, we know how to solve all k minus 1’s say alphabets efficiently 

and we have done is recursive thing to construct the tree for size k. Suppose, this is 

another strategy would produce the better tree for size k, so this another tree candidate 

tree S produce by some different strategy, who is average bits for letter is strictly better 

than the one that we construct recursive. 

Now, in S, we know for sure that these two letters that we use the in recursive 

construction x and y. So, they occur somewhere the bottom of this tree. So, this is my 

tree S, these must be leave nodes, because they have the lowest frequency is over all the 

letters, so must be a maximum depth, that they may not be next to each other. But, it 

does not matter, because since they are both and maximum depth, I can move them 

around, this step, I can move letters around, I can reassign the two other leaf to a sender. 

Such that, I come with the configuration I come to new S, I call it S again, where actually 

have x and y together. I can assume that the S, that has this optimal property, which is 



better in the tree as constructed, actually as x and y a sibling leaves other maximum 

depth. Now, what I am going to do is this S, I am going to concretely fuse this and get an 

S prime. 

So, this explain will be our k minus 1 letters except instead of doing this by a recursive 

call, I am actually taking a call concrete tree over k letter and I am actually compressing 

to two nodes into 1 and call in it to tree over k minus 1 data set. But, because this over k 

minus 1 letters and these are represent the encoding, it cannot be any better than the 

encoding that I recursively computed for k minus 1 letters, because I am assumed by 

induction by that algorithm those efficiently for k minus 1 letters. 

So, so S prime is no better than T time, but as prime plus f of x y is S, T prime plus f of x 

y is T. So, the different T prime and T and S prime S and exactly the same. So, the S 

prime is a then T prime, then S cannot any better than T. So, it was a contradiction to 

assume that as I strictly better than T is this 2’s that strategy of recursively computing T 

is optimal for all k. 
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The word about the implementation, so what we have to do is k minus 1 time, we have to 

merge this two minimum values and compute the recursive solution, bottle neck, what 

will make is finding the minimum values. If you use an array, then as we know scan the 

array instant to find the minimum values, remember that the minimum of values keep 

changing, I cannot short it one send for all. Because, each time I combine two letters, I 



can use a new letter into my array with a new minimum value which was not there before 

and not a new value, which may not there before it is may or may not be the minimum. 

So, each state I have to find the minimum, so it is an order case can each time, so linear 

scan and I do this appropriate k these times. So, I get order case two, but it should be 

fairly cleared into see that this bottle neck can be got around by using a heap, where 

there is precise what heaps are good at finding the minimum. 
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So, if I maintain the frequencies is not at as a heap, then the order log k time, I can find 

the minimum values and then I can insert back the new composite letter also into heap in 

to log k time. So, each iteration takes some log k, and so I am improving from k square 

to k log k. 
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So, recall that, we mention that the beginning that this is going to be a last greedy 

algorithm. So, y is greedy, well because every time, we make a recursive call, we are 

deciding to combine two nodes into one and the two letters we are choose always once 

with the lowest frequencies. Now, what is to say, that we could not to better by choosing 

the lowest then the third rows per, but we now a try, we only try to lowest to the second 

rows. 

So, we make a locally optimal choice and we keep going with choice, never going back 

to the visited, and finally we get a global solution. Now, we are prove that this global 

solution is actually optimal and we have to do that, because there is no other reason is 

expect that I making a short sited choice, at the current time take the two worst 

frequencies and combine them, that you are always going to get the best solution. So, 

this is very much the greedy is letter. 
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So, finally a brief historical note, so Clot Shannon is the father of information theory and 

when, we are looking at these problems around 1950 are, so they where face to this 

problem are finding and efficient. So, Shannon and Fano, proposed the divide and 

conquer thing, so what us it was let us look at the encoding of the alphabet. So, some of 

them are going to start with 0, some other going to start with 1. 

Everything which is in the left sub tree of this coding tree that we construct is going to 

have a code of the found 0 are something, something, everything on the right is going to 

have something at the found once. So, it seem intuitive to them, then divide and conquer 

strategy is good, what you can put letters on this side, such that the occupied roughly of 

the frequency weight of the total alphabet. That is a frequencies of all the letters, who's 

encoding start with 0, their frequencies added to roughly hard and the other one also to 

hard. 

So, split the alphabet in the two of equal weight assign some of them to start with 0’s, the 

other to start with 1, then I recursive it is solve this t. So, a partition is A 1, A 2, sums of 

the frequencies in each other sets are roughly equal, solve them recursively. 

Unfortunately, this is not guaranty to generate an optimal encoding, you can come up to 

the example, where you can do this and then end of the something which you can 

improve by doing some other. 



So, it turned out the Huffman was a graduates student in a course of Fano, he heard about 

this problem and we thought about it, and after a few years he came up with this clever 

algorithm which we are done in it. 


