
Design and Analysis of Algorithms 

Prof. Madhavan Mukund 

Chennai Mathematical Institute 

 

Week - 06 

Module - 04 

Lecture - 42 

Greedy Algorithms: Minimizing Lateness 

 

We now look at a different Greedy Algorithm with a slightly more complicated proof of 

correctness. So, the problem we are looking at is called Minimizing Lateness. 

(Refer Slide Time: 00:12) 

 

So, like our interval scheduling problem in the last example, we have a single resource 

and there are n request to use this resource. So, now unlike the earlier situation where we 

had a start time and a finish time and the resource had to be scheduled within this time. 

Here we just know that each request i requires time t of i to complete and each request i 

comes with a deadline d of i, here we are going to schedule every request. 

So, each request j will started at time start of j, it is called s j and it will time take t j, so it 

will end at f of j, the finish time of j which will be the start time plus the time it takes to 

process request j. Now, if this finish time is bigger than the deadline, then it is late, so the 

amount that it is late is given by the difference between the delay and the finish time and 

the goal is to find a schedule which minimizes the maximum lateness. So, we want to 

minimize the maximum value of this l j over all the jobs j. 



(Refer Slide Time: 01:28) 

 

So, since we know we are looking for greedy strategies, let us try and suggest some 

greedy strategies for this problem. So, suppose we want to finish jobs as quickly as 

possible, so we choose a shortest job first, so we choose jobs in increasing order of 

length. So, this could be a greedy strategy, but unfortunately there is a fairly simple 

counter example. So, suppose we have 2 jobs job 1 takes 1 time unit and job 2 takes 10 

time units, but the deadlines are 110 and 10 respectively. 

In other words, the first job has a very long gap within which it can be scheduled without 

any penalty, whereas this second job has to finish more or less assuming it starts 

finishing. So, now if you pick this shortest job then we are going to incur a lateness of 1, 

because we are going to go from 1 and then we are going to go from 2 to the 11. So, the 

second job is going to finish 1 unit of time late, on the other hand if we do 1 to 10 then 

we do 11, then we get no lateness, we get lateness 0. So, here picking the shortest job 

first does not give us the best answer. 



(Refer Slide Time: 02:44) 

 

So, the second strategy might be to pick those jobs, so earlier we saw that we had a job 

which had 10 time units and it will also need it had a deadline of 10. So, we need to pick 

those jobs perhaps whose time is closes to the deadline. So, we look at the slack how 

much time we can effort to delay start in my job, d j minus t j and pick those which have 

the smallest slack. So, here we have a very similar example to the first one, except that 

the deadline of the first job which now to... 

So, here we have slack 0 for the second job and slack 1 first job, so the second one has 

the deadline equal to it is time, the first one has the deadline which is one node that is at 

time. So, then by this strategy we would pick t 2 first and if you pick t 2 followed by t 1, 

then what happens is that this lateness is going to be 11 minus 2, because we first to t 2. 

So, we start t 1 a job 1 only a time 11, so it finishes the time 11, but it should have finish 

2, so the lateness is 9. 

On the other hand, if we do t 1 followed by t 2, then we have that the lateness is just 1, 

because of the second job should have finished at 10 instead it finishes at 11. So, 11 

((Refer Time: 04:15)) is 1, so now here although our intuition told us to pick this smallest 

slack time actually that is not the good one. 



(Refer Slide Time: 04:25) 

 

So, turns out that a greedy strategy that does work is to choose the job with earliest 

deadline d of j first, the challenge is to proof that this strategy is in fact correct. 

(Refer Slide Time: 04:40) 

 

So, to proof that is correct we will first assume that we have actually numbered all our 

jobs in order of deadline. So, we number our jobs 1, 2, 3 up to n, so let that the deadline 

of 1 is less then or equal to deadline of 2 and so on. Now, having done this our schedule 

is very straight forward, we just schedule job 1 first, then job 2, then job 3 and so on. So, 

we do not have do anything, once we have shorted the jobs by deadline, we just schedule 



them in that order to the job 1 starts that time 0 which will call as set 1, it ends at f of 1 

which is t of 1 0 plus t of 1. 

Now, s 2 the starting time for job 2 is as soon as job 1 s, so at f 1 we start job 2 and it will 

end at s 2 plus t 2. So, likewise now s 3 will be f 2, we will start job 3 at time t 2 and we 

will go on to s 3 plus t 3 and call this f 3. So, we will just schedule each job as soon as 

the previous one ends in this deadline order. 

(Refer Slide Time: 05:46) 

 

So, since we have scheduling jobs one after the other without waiting, it is very clear that 

this schedule has no gaps, it has no idle time. The resource that we are trying to allocate 

is continuously in use, until all n requests are finished. So, now the claim is that there is 

an optimum schedule which has no idle time, because suppose you had an optimum 

schedule in which you have blocks like this where the resources is being used and there 

were these gapes in between which were idle. 

Whereas, very clear that I can shift these things forward, look at this, there is no 

constraint on when I can skip to this, I only have a constraint on when thing should 

finish. So, when move things earlier I can only reduce the lateness, so if the blue 

schedule with gaps was optimal, I can move it, so that it does not have gaps and certainly 

my new schedule will have no more lateness in the blue one. Therefore, we can always 

assume that optimum schedule has no idle time. 



(Refer Slide Time: 06:51) 

 

So, now our goal is to actually argue that this schedule that we have produced by sorting 

in terms of deadlines and then using that order blindly, this as could as any optimum 

schedule. So, here in the previous interval scheduling problem, we said that we would 

not be able to guarantee that schedule that we found is equal to a given optimum 

schedule, but we will just show that there are of same size. Now, here what we do 

slightly different, we will take an optimum schedule which is produced by some other 

strategy and we will step by step transform it into one that is the same as one that we 

have produced. 

So, this is what is called an exchange argument, we start with some schedule and then we 

keep moving things around in that schedule preserving optimality, until eventually we 

transform the given schedule O into our schedule A, which would get among greedy 

strategy. 



(Refer Slide Time: 07:52) 

 

So, our strategy processes and schedules jobs in order of deadlines, so we can say that 

this schedule O, your optimum schedule has an inversion, if it actually has two jobs 

which appear out of order within deadline. So, there is a job i which appears before jobs j 

and O, but the deadline of j is strictly before the deadline of i. So, notice that our 

solution, because the greedy solution processes change in deadline order, there cannot be 

any inversions in our schedule, but the optimum schedule the arbitrary optimum schedule 

that we have presented with may well have inversions. 

(Refer Slide Time: 08:37) 

 



So, now the first point is that if you have no inversions and no idle time, then the lateness 

must be the same. So, first of all if you have no inversions and no idle time then the only 

flexibility we have is to reorder, because we not allowed to put things with later 

deadlines ahead of things with earlier deadlines. The only flexibility we have is to 

reorder the things with the same deadline, we may have multiple jobs within the same 

deadline and we could pick different sequential iterations or different reordering of these 

same deadlines, they would not validate inversions, because they are equal. 

But, inversions happens only when we have something strictly smaller coming after 

something that is strictly become. So, the claim is that in such a situation, we cannot 

have a different answer, because of even if you allow our self to shuffle jobs in same 

deadline. So, here is a picture, so suppose these three jobs, the blue job, in the yellow 

job, the red job all have the same dead line. So, here is one sequence where we do blue 

first, then yellow, then red here is some another sequence, so we do red first, then blue 

then yellow. 

Now, all have the same deadline, so the same deadline is at this point. So, deadline is 

here, now the last of these jobs regardless of how we shuffle them will end the same 

point. Because, we have the total the sum of the times and that will be the end and the 

last job will have among these, the maximum delay with respect to this deadline. 

So, since we have counting the maximum lateness, the maximum lateness cannot change 

regardless of how I shuffle these jobs, which ever jobs ends will end at the same time, 

because all of these are of the same length or I mean the sum of the these are same length 

regardless of how I shuffle them. And therefore, the lateness does not change, so in 

somebody if you have two schedules which have more inversions and no idle time, then 

the answer in terms of the lateness we produce is this. 



(Refer Slide Time: 10:41) 

 

So, now if you can claim that there is an optimum schedule with no inversions or no idle 

time. Now, recall that our schedule A has this property; A has no inversions by 

construction and no idle time. And now I am going to claim that there is an optimum 

schedule, we going to start with O and we are going to produce from this some O prime 

which has no inversions, no idle time. And by the previous remark, since O prime and A 

both have no inversions no idle time, they must actually produce the same lateness. 

So, how do we do this? So, first of all we know that we can assume that the optimum 

schedule has no idle time. Because, we already said that idle time is useless we can 

always shift anything left, compress out the gaps, so that there is no idle time. So, the 

first observation is that now we have no idle time, so one part of this requirement is 

assumed, so the only thing that we have to worry about is inversions. 

So, the first claim is that if O has an inversion, then in fact we have an inversion among 

two consecutive elements, there is a pair of jobs i and j such that j is immediately after i, 

but the deadline of j is smaller than the deadline of i. So, we have something with a 

smaller deadline which comes later than something to the bigger deadline and this is very 

clear, because if there is an inversion, then the deadlines normally will keep increasing 

and then somewhere this is an inversion, so it comes down. 



So, at the point where it comes down, we must have two adjacent things, where the 

bigger one comes before the smaller one. So, whenever we have an inversion anywhere 

in the sequence, we can find some point where two consecutive items have an inversion. 

(Refer Slide Time: 12:37) 

 

Now, the next observation is that we can remove this inversion by swapping these two 

jobs. So, we have i and j which has an inversion, then if we exchange i and j that is we 

put j before i, then now d of j is less than d of i and this inversion is gone. So, it is 

obvious that why we remove the inversion. But, what is now the obvious is that this 

operation of removing this inversion by swapping these consecutive jobs which are out 

of order will actually not affect the quality of this notion. 

So, what we need to ask is whether after swapping i and j we get a solution whose 

maximum lateness is no larger than that of O. So, we have an optimum solution, we have 

an inversion and an adjacent consecutive inversion, we want to undo this conversion by 

swapping those two consecutive elements, but we do not want to change the optimality. 



(Refer Slide Time: 13:38) 

 

So, this can again we seen by a diagram, so remember that this inversion said that i came 

before j, but d of j was strictly less then d of i which is why it was an description. So, we 

have this kind of situation, so we had some history this blue history and then at this point 

we had i and then j. So, this is my original and now I am going to go from go to O prime 

by exchanging ((Refer Time: 14:08)). 

(Refer Slide Time: 14:10) 

 

So, now observe that d of j is to the left of d of i by a assumption, so d of j strictly less 

then d of i. So, now let us look at the lateness of j, so it is from the ends i plus j take the 



same amount of time, whether I do i before j or j before i. So, if I look from the deadline 

of j up to where j n's then this length, this lateness must be more then the lateness below 

cannot be the less then. Because d of i is strictly to the right of d of j and the n point is 

the same. 

So, if I look at the n point and subtract the deadline point, the deadline point for i is 

closure to the n, then the deadline point for j, because d j is before d 1. So, therefore by 

exchanging i and j not only have an a move on inversions have also guaranteed that 

because of this notice that late no other job, every other job up to this point answer to the 

same time when the every time which is the after this point also end the same point. 

So, no other job has is lateness affected by the soft only to jobs who lateness changes or i 

and j by the change in such a way that the overall lateness then only reduce, it cannot 

increase. So, therefore this is the safe soft in terms of preserving optimality. 

(Refer Slide Time: 15:34) 

 

So, therefore now we come back to our claim that there is an optimum schedule with no 

inversions and no idle time, we know that we have an optimum schedule with no idle 

time, because that general principle. Now, from the previous argument we can remove 

every consecutive inversion without increasing lateness. Therefore, the optimality is 

preserved, now if you add n jobs even if a every pair of them is out of order, we have 

only n to n minus 2 1 by 2 inversions to begins with. 



So, we can systematical inverts every one of them, without affecting optimality, until we 

get an optimum schedule with no inversions and no idle time. And we already saw that 

any two schedules is no inversions and no idle time must be equivalent terms of lateness. 

Therefore, our schedule A which has the property that it has no inversions and no idle 

time as the same lateness as this transformer version of O at since a transform version of 

O has the same lateness O itself and O is optimal our algorithm our solution A is also 

optimal. 

(Refer Slide Time: 16:45) 

 

So, the trick in this problem was to actually prove that the greedy strategies was correct, 

the implementation and the complexity are very easy to calculate, we just have to short 

the job is by deadline and then read out in this schedule in the same order. So, shorting 

the jobs takes n log in is usual and reading of this schedule just takes order n time, 

because we just we read out jobs 1 to n after they are shorted. So, overall we have and n 

log n algorithm. 


