
Design and Analysis of Algorithms 

Prof. Madhavan Mukund 

Chennai Mathematical Institute 

 

Module – 02 

Lecture - 40 

Balanced Search Trees 

 

In the previous lecture, we looked at operations on search trees. We claim that these were 

efficient that we could maintain balance. So, let us see how we can keep search trees 

balanced. 

(Refer Slide Time: 00:12) 

 

So, recall that we are looking at these 7 operations, we want to able to search for a value, 

you want be able to insert and delete values, you also want to be able to compute the 

minimum and the maximum value in a tree and also find the predecessors and successor 

of the given value and all of these we claimed would be order log n provided the tress is 

balanced. 



(Refer Slide Time: 00:34) 

 

So, thus because all of the operations as we implemented them, we will walk up and 

down a single path and so the worst case would be the height of the tree and in our 

balanced tree the height will always be logarithmic in the size of the tree. So, today’s this 

lecture the goal is to explain, how to maintain the balance as the tree grows and shrinks. 

(Refer Slide Time: 00:54) 

 

So, trees there are many different notions of balance in a tree, so essentially a balance we 

should think of it is like a physical balance. So, if you go to an old style vegetable seller, 

when they will have this kind of a balance and then you want at any point if you hold up 

a tree by it is root, the two side should be balanced, they should be equal. So, the most 

direct notion of balance is that the two are exactly that is the number of nodes at the left 



is equal to the number of nodes in a right for every node. 

Then, it is easy to see that you when you get a complete binary trees, so example you 

could have a tree which has this structure or if you extend it one more level, then for 

every node in the left you must extended on the right, but then these must also be 

balanced, so you must definitely complete this. So, you can have a tree up to 3 levels 

which is completely filled or up to 4 levels and so on. So, if you want this exact size 

balance, then it is very restricted. 

So, you might have a little bit more flexibility, you might say there we do not want to be 

exactly equal, we may be wanted it to be at most one off, then you could have structures 

for instants like this, where you have only a left or you have at this point a left and right 

put you have only array. These standards structures, now which are not complete binary 

trees become balanced in this notion. So, this allows us more flexibility and we can get 

more trees this way, but it is difficult to maintain this property incrementally as we do 

inserts and deletes. So, we will go for different notion of balance. 

(Refer Slide Time: 02:25) 

 

Notion of balance that we will use is not with respect to size, but with respect to height. 

So, we will say that the height is a number of nodes from the root to a leaf. For example, 

if I have a tree which looks like this, then here the height is 1, 2, 3, 4 because on this path 

we have 4 nodes. So, the heights become 4 it is a length of the longest path measured in 

terms of nodes, the reason we measured in terms of nodes is, then we can distinguish 

easily, the empty tree from the tree with only are root. 



If you measured in terms of edges, the tree with only a root will have height 0, because 

there are no edges and so would be the empty tree. Whereas, if we measure it in terms of 

nodes, then the empty tree has height 0 and the tree with only the root has height 1. So, 

we can distinguish these two. And now in keeping with our earlier relaxation of the size 

condition, the height balance tree will be one where the height of the left and the height 

of the right differ the at most 1. 

Now, this is more relaxed in the previous thing. For example, now of course, I could start 

with a height balance tree like this. And then, I could now connect this to form a height 

balance tree like this and now this which is height 3 tree I can connect with a height 2 

tree and form a height balance tree which looks like this. So, the height of the left sub 

tree is 3, height of the right sub tree is 2 in this recursively the height of left sub tree is 2, 

the height of the right is sub tree is 1 and so on. 

So, we could have things which look quit difference, so size here for instant size is 4 and 

size is 2. But, nevertheless you can kind of compute that the size even in this case will be 

exponential in the height or rather the height will be logarithmic in the size. So, these 

trees are called AVL trees the named after the two people who independently invented 

them one person called Adelson-Velsky and independently Landis. So, an AVL tree is a 

height balanced tree which says that at every node the height of the left and height of the 

right sub trees differ by at most 1. 

(Refer Slide Time: 04:53) 

 

So, let us refer to the difference between the height as just the slope, so we have a 



intuitively in our pictures. So, if it is unbalance then thing is treated, so we could have till 

this way or till this way, so we call this the slope. So, we let us say this slope is height of 

the left minus height, so the height of the left is less than the height of the right, then you 

have a positive slope. If the height of the left is bigger than the height of the right, then 

you have right, left is smaller than right you have negative slope, left is bigger than right 

you are positive slope. 

So, in a balanced tree since the height difference absolute value must be 1, you can only 

have three possible slopes throughout the tree, either there is no slope they are exactly 

the same or it is minus 1 or plus 1. Now, if you can argue very easily that if the current 

value is of the slope some minus 1 plus 1, when you delete a node, you can reduce one of 

the heights by 1. So, the height difference can go from 1 to 2 or when you increase you 

can make the height difference, again go from 1 to 2. 

So, the new slope after a single insert or a single delete can be at most minus 1 or plus 2, 

minus 2 or plus 2. So, what we will end up to do what we will try to do is that whenever 

we do an insert or a delete we will immediately try to rebalance the tree. So, we would 

have a single disturbance from minus 2 or plus 2 it will never become very badly 

unbalance and we will immediately restore the balance to within minus 1 to plus 1. 

So, you will do this rebalancing we will also do this rebalancing bottom up, so what 

happens we will be do an insert, if you remember is that we go down and we find a place 

to insert. So, this point we add a new node, so therefore now at this point that could be 

some imbalance, so we fix it, then we will go back to the up this path and we will go 

there and we will fix the path here, but at this point you will assume that the tree below 

has been balanced. So, whenever we rebalance the slope which is outside the range, you 

will assume that the sub trees below that are already balanced, because this balancing as 

we will see is going to be done bottom up. 



(Refer Slide Time: 06:59) 

 

So, here is a typical situation that we would reach after a single operation which removes 

the balance. So, we might have a node which has slope plus 2 or minus 2, so let us look 

at plus 2 minus 2 turn out be symmetric. So, we have a node which we call x which has 

slope plus 2 and what it means is, it has a left tree and right tree. Such that, the height of 

the left tree is 2 more than the height of the right tree, remember this slope is right or left 

minus right or left, so h plus 2 minus h will be 2. 

Now, recursively we are going to assume that all the slopes here and here are at most 

plus 1 or minus 1. So, we are assuming that everything below this has been fixed and the 

only in balance in this sub tree at x is x itself. 

(Refer Slide Time: 07:50) 

 



So, now since the left has height h plus 2, it has height at least 2, h can be at most at least 

smallest h can be 0, so it has height at least 2, so there at least 1 node here. I mean 2 

means that there are at least 2 nodes here, so we have at least 1 node in particular. So, we 

will expand this by exposing it is root and the root will have in general 2 sub trees, so 

now this whole thing as height h plus 2. 

So, we will now look at this new node that we have expected. So, this slope is minus 1 0 

or plus 1 and we are going to do some bottom up rebalancing, we are assuming 

everything below it is case. So, I have going to do some case analysis based on what is 

the slope of y. 

(Refer Slide Time: 08:41) 

 

So, let us first look at the situation where the slope of y is either 0 or plus 1, so if it is 0 

or plus 1 it means that so remember this whole thing was h plus 2 of which 1 node is 

here, so it is left child must be at least h plus 1 and because it is slope is 0 or plus 1, the 

right child is either h plus 1 in case slope is 0 or it is h incase the slope is plus 1. So, now 

this is the current situation as we have it with an unbalanced node x everything below is 

balanced. But we have just come to a situation where we try to analyze what is the 

situation behind. 

So, x is got a balanced unbalance of plus 2 and below it we have why which whereas 

assuming is either 0 or plus 1. So, now we do this rotation, so we take this tree and we 

kind of hang it out by y and we reattach things. So, in this rotation when you hang it out 

by y, x comes down and now we look at this sub trees, so we have the 3 sub trees, we 



have TLL, TLR and TR. So, TR is to the right of x and it is also to the right of y, so it is 

the right of both, TLR is to the left of x to the right of y, TLL is to left of y, left of x. 

(Refer Slide Time: 09:57) 

 

So, if you go there we find that TR is to the right of both, TLR is to the left of x right of y 

and TLL is to the left of both. So, we hang up these trees, so now all the values we can 

verify will be currently organized as a search tree issue. But, now if you look at the 

slopes, we have just inherited this slope some what we knew that the slope of TLL of h 

plus 1, TLR is h plus 1 or h and TR is h. 

So, this means that if I look at this over all height at this point, it is either h plus 1 or at 

most h plus 2, so this is h plus 2 or h plus 1. If it is h plus 2, then the height slope at y is 

minus 1, if it h plus 1 then both sides at h plus 1 slope at y is 0 and if you look at x, here 

we have h plus 1 and here we have h, so the difference is either 0 or plus 1. So, x is now 

balanced, y is balanced and by assumption inductively all the grey sub trees are 

balanced. So, by one right rotation, we have rebalanced the tree. 



(Refer Slide Time: 10:55) 

 

So, the third situation is that it is not 0 or plus 1, but the slope at whiles minus 1. So, we 

have already dealt with the case where 0 or plus 1 is the possibility. So, if it is minus 1 

this means that the right sub tree must be strictly taller than the next left sub tree. So, 

with the whole thing remember again is h plus 2 the high assumption, because the whole 

thing has plus 2, so this whole thing is h plus 2 and this thing is h. 

Now, this h plus 2 it now beings split of y and the rest therefore h plus 1 must be coming 

in the right and h 1 the left we got the slope by assumption we are assuming slope is 

minus 1. So, now we are going to expand out this node now it is a h plus 1, so there is at 

least 1 node here even a way which is 0 it has at least a root node. So, we will expose a 

root node as we exposed y earlier. 



(Refer Slide Time: 11:48) 

 

So, now we are kind of expend it this TLR as z with 2 sub trees TLRL. So, this supposed 

to indicate let us started their original tree go and left go right and go left, so TLRL go 

left, go right, go right. So, it is TLRR, so that is notation for the sub trees, so this whole 

thing was h plus 1. So, therefore, this h plus 1 can come either sides, so either this is h or 

h minus 1 or this is h or h minus 1 actually is one of then must be h. 

Because, we are both are h minus 1 then the whole thing cannot be h plus 1. So, at least 1 

is h and it is balanced, so I do not know which way it is, but at least one of these tress as 

h I will h the other one could have h or h minus 1 and it terms out it will not matter 

which one. So, now I have a two-step procedure what I will do is, now I will do is 

similar rotation, but to the left involving these two nodes. So, I will hang up these sub 

trees here by z. 



(Refer Slide Time: 12:50) 

 

So, if I hang up these sub trees then what happens is that these 3 trees below I have to be 

a reattached and we reattach some in the correct with TLL is bit to the left of both y and 

z TLRR is to the right of both y and z and TLRL is to the left of said and to the right of 1. 

And now, if you go back and check all the heights, then you find that at y I either have 

height 0 or I have height plus 1. Now, if I look at z then the left hand side is now h plus 1 

and the right hand side is h or h minus 1. 

So, if is h plus 1 and this is the h then I get plus 1, if it is h plus 1 this h minus 1 I get 

plus 2. So, in the process now not only did I have x which was unbalanced and 

temporarily created is z which potentially is unbalance. So, I cannot say for sure it is 

unbalance, but it could to a unbalance, because is I do not know which is h and which is 

h minus h 1, but this is only in intermediate steps, so now what I did, so earlier what we 

did, we will did on left rotation here. So, I am going to follow this a by a right rotation at 

x. 



(Refer Slide Time: 14:08) 

 

So, we rotate write a text z goes up x goes down and now again we hang of the 4 trees 

and there is only one way to hang of you can verify it will go back and check out their 

hanging. So, TRR must be bigger than z and x, TLL must be smaller than y and z and so 

on. And now we have a very happy situation which is that if you look at the slope of y, 

then it is the either 0 or it could be plus 1 because this could be h minus 1. 

If you look at x it could be minus 1, because this could be h minus 1 this definitely h or 

we could be 0. But, this whole thing is definitely h plus 1 because I do have at least 1 sub 

tree of size h, this whole thing is again h plus 1, because I have at least 1 sub tree of size 

h and therefore, the slope at 0 at z is 0. So, both all three nodes x, y and z have slopes in 

the correct range and therefore, I again I will stored the balance. 



(Refer Slide Time: 14:59) 

 

So, to summarize this what we have said is that if we have plus 2, then we look at the left 

child of x call it y, if the slope of y is 0 or 1 we rotate at right at x, if the slope at y is 

minus 1 be first rotate this and then we rotate y. Either case we rotate at x, but first we 

rotated y in cases show to minus 1. Now, it will turn out that if you have the other set 

case, the other extreme where the slope at x is minus 2, then will have a symmetric 

picture, so we will have to expose the right, so I will call it y. 

So, then the basic basics operation is that if y has slope minus 1 or 0 it symmetric 

remember, then we will do a single left rotation x. Otherwise, we will first do a right 

rotation at y, in case is slope at y is plus 1 and then we will do a left rotation itself. So, 

we one not look at their minus 2 cases in detail, but it is easy to see that it is symmetric 

to the plus 2 case. 



(Refer Slide Time: 15:58) 

 

So, how do you do these rotations, where will you can just draw this pictures and figure 

at outs. So, you just give names to everything, so we say that we want to rotate this x 

down in the y up, now we have are original t pointing here remember. So, it is we cannot 

change in the node that t is pointing 2, so we remember the value at t we remember the 

value here. So, we need this names x and y to that contains and then we have this 

counters pointing to these three trees TLL, TLR and TR and then we reconnect that. 

So, what we do is we first replace this value by y, then what we do is we make this node 

come to the right and we reset it is value to x. So, we put an x here and we have note it 

there and then we have hang of below that top node on the left we put TLL and below 

this right new right node on the left if put TLR on the right would TR. So, you just do 

this kind of reconnection is like a you know un hooking and re hooking trees and just we 

just keep track of the all the names. So, that everything is un hook and re hook correctly. 

So, it is a very simple, so you notice that this the kind of constant set of operation 

involving of few of these left and right pointers. So, it will be regardless of the size of the 

tree, it is a very local operation. So, we can treat this as one constant unit operation. 



(Refer Slide Time: 17:25) 

 

And a similar thing for the left, we give names and just we do this updating exactly has 

we had done before. So, again these are constant set of operations which implements 

rotate left. 

(Refer Slide Time: 17:38) 

 

So, now that we have that two rotations, then what does rebalancing set, rebalancing set 

that if I have node which has plus 2, then I will expose it is left child and I will check it 

slope, if it is slope is minus 1 then first I will do a left rotation there and then regardless I 

will do a right rotation at the top. In the symmetric cases, if I have a slope just minus 2 at 

the top, then it will have a right child and then if this as plus 1 when I will first to a right 

rotation here and then regardless I will do a left rotation of the top. So, rebalancing is 



these two steps and rotation this is set up other steps, so basically rebalancing at a given 

node is a constant number operations at that node. 

(Refer Slide Time: 18:24) 

 

So, now what we do is every time we make our change in our tree which could affect the 

balance of the slope of a node, we do a balance. So, when we in our earlier code for 

insert, when we did a recursive insert in the left of a tree we rebalanced, similarly we 

insert in the right of the tree we rebalanced, we just introduce this rebalance code and 

note is that this a constant operations for this node. So, you will do this all the way along 

the paths. So, this will do a log n times in constant number operations, so this would not 

affect anything in terms of the asymptotic complexity of our operation it will be a 

logarithmic number of constant time operations for each node. 



(Refer Slide Time: 19:04) 

 

The same with the delete, where above we do a recursive delete we rebalance. 

(Refer Slide Time: 19:10) 

 

And then there was a case where we deleted the maximum value or the predecessor, so 

again we do a rebalance. So, where ever we had are insert and delete affecting the 

structure of the tree we just make sure that we rebalanced the tree that ((Refer Time: 

19:22)). 



(Refer Slide Time: 19:23) 

 

So, there is one point we have to be bit careful about in this thing, so we said that we 

have to do all these rebalancing. So, if you go back to rebalancing, so rebalancing 

requires to compute the slope and slope we said is define to the height of the left minus 

height of the right. Now, it is possible to compute the height on the fly, the height of the 

tree is recursively computed, if it is nil it has height 0; otherwise, you recursively 

compute the height of the left in the right and then accounting for this node you add one 

to that. 

So, you take the maximum of the two sub trees and add one, but this unfortunately 

involves examining every node in the tree. So, this will be propositional to order of the 

size of the tree. So, this will be exponential operation in some sense depend I mean 

compare to the path, so we are try to do login operation, this will be a order n operation. 

So, this will be killing all our attempts to do something efficiently, because in order to 

compute the height we actually have to see the entire tree which is not we want to do. 



(Refer Slide Time: 20:28) 

 

But, we can get around this by just keeping the current value of the height and updating 

it each then. So, we have additional things, so we have in our tree node, we currently had 

the value, parent, left and right. So, now we just add one more field, so now whenever 

we do any rebalancing, then the height of this tree may change the current node. So, we 

just look inductively we assume that below has the height got set correctly. So, we look 

at the two heights which are locally there add want to the maximum ((Refer Time: 

21:07)). 

Now, this is just looking up one value and are two neighbors below to two children. So, 

this now becomes a constant time operations, it does not require is to traverse entire 

trees. So, as we are rebalancing we readjust the heights and every time you want to check 

to slope we just have to check the value of the two tree is below us and check that 

difference of their heights. Because, that will be given locally by this height field in the 

node. So, we have to be careful not to compute height recursively, but to store the height 

as part of the tree and also update that with every update. 



(Refer Slide Time: 21:39) 

 

So, to summarize you can use rotations to maintain height balanced binary search trees 

and then height balance search tree we have claimed that the height is going to be 

logarithmic in the size. And since all our operations are propositional to the height, 

because they all go along and one path, all these operations namely find, insert, delete, 

minimum, maximum, predecessor and successor can all be done in logarithmic time. 


