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Divide and Conquer: Counting Inversions 

Let us go back and look at Divide and Conquer again. 
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So, recall the divide and conquer paradigm consists of breaking of a problem into 

disjoint subproblems. Then, we solve each of these subproblems separately and then we 

combine them efficiently to form a solution to the original form. So, we have seen two 

examples of divide and conquer, merge sort is a classic example of divided conquer, 

where we divide the list to be sorted of the array to be sorted into equal parts. 

We sort these two parts separately and then, we efficiently merge them, it was sorted list. 

Quick sort has the different strategy, what it tries to do is avoid the merging step. So, you 

rearrange the original list, so that you have a lower and upper partition with respect to a 

pivot. Having rearranged them, you can sort the lower half and the upper half 

independently and now, because they already rearranged, you do not have to merge 

them. 

So, basically there is a cost involve with setting up this sub problems and a cost to 

involved with combining the subproblems. And if this set up cost and combination cost 



is efficient, then the overall solution gives you something much better than a direct 

approach could. 
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So, let us look at the following situation, very often when you go to an online store, you 

find a recommendation. For example, it would say, the customers like you who were 

interested in books like these or customers who bought this phone also look for this pair 

of head phones. So, these services are recommended to you based on your profile, your 

online service maintains some profile information about what you like and what you do 

not like. It compares what you likes and do not like with others and identifies the similar 

category of people. 

And then, it looks for products or services that category has opted for, which you have 

not and then recommends these three. So, fundamental step in such a recommendations 

system is that of comparing profiles, how does one persons likes, how do one persons 

likes and dislikes compared to those of others. 
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So, one instance of this is when you have preferences over things like movies or books, 

so suppose over the sequence of time, you have gone to some website and entered your 

preferences about movies that you watch. So, say there are five movies, let us just call 

them A, B, C, D and E which both you and somebody else have ranked on this website. 

So, you in general two individual who come up with different rankings. So, perhaps you 

rank D first and E last and your friend ranked B first and E last. So, you both agreed that 

E was the worst, but you disagree on whether B or D was better. In fact, your friend 

thinks D was so bad, that is actually only next E and from the bottom. So, D which was 

your first has become your friends 4th. 

So, now what we can do is we can take two such sets of rankings and ask how similar or 

dissimilar they are. So, one way of measuring this is to compare how you rank pairs of 

movies. So, for each pair of movies, you can compare whether you rank one better than 

the other and your friend also does or you done. So, here for instants, if you look at B 

and C, then this is ranked in a similar way by you and your friend. 

On the other hand, if you looked at D and B, then in one case, you rank D above B and 

your friend rank B above D. So, we do not particularly care how far a part there are, how 

many other things there are, we are just saying given choice of two things, which do you 

would prefer, which does your friend prefer and combine the choices across all the 

choices available in the given list. 
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So, what we are trying to do is measure the dissimilarity in terms of what we call 

inversion. How many pairs of movies or rank in the opposite way between you and your 

friend? So, if you and your friend rank every pair of movies in the same order, then your 

total order of performances must be the same. So, if there are zero inversions, then you 

have exactly similar in your taste to your friend and the rankings are identical. 

On the other hand, if you have n movies, then you can do n choice, n choose to pairs. So, 

the number of different pairs of movies are n choose 2 which is n into n minus 1 by 2. 

So, if every possible movie you disagree with your friend, then the number of inversions 

will be n into n minus n by 2, which is an order n squared. So, you can use now this as a 

measure, how many pairs are out of order, as a measure of how similar or dissimilar, two 

sets of rankings are and this could be used for instance in this recommendation since to 

decide which customers to compare in making a recommendation. So, you only want to 

pick customers who are close to the one, whose recommendation is being made. There is 

no point recommending something that the personal is not going to like because you 

comparing it with somebody who has very different taste. 
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So, we can formulate this in another way. So, now, we take our ranking and we assume 

that is the given order. So, we pick the certain order for the movies and we call that the 

basic ranking 1, 2, 3, 4 up to n. Now, our friends ranking would rank what we called 1 as 

may be 5, what we call 2 is may be 3 and so on. So, everything that we rank with a rank i 

will be ranked where different rank j by our friend and of course, every rank will appear 

there somewhere are the other. 

So, the friends ranking will be a permutation of 1 to n and what you are asking is if I 

rank i before j, that is before i is the smaller number than j, does the friend rank j before 

i, any such think would be an inversion. So, inversion would be a pair i comma j in my 

list, where i smaller than j. So, my list i is update of j, but in my friends list, j appears 

before i in the add permutation. 
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Let us look at this little more concretely. So, supposing this was our original example. 

So, there was 5 movies A, B, C, D, E and I rank them and you rank them is D, B, C, A, 

E. Then, I would say D is 1, B is 2, C is 3 A is 4 and E is 5. So, this is my original list 1 

to 5. Now, because I have this correspondence between their movies and that things and 

the rankings, then I know that the D for a since is 2. So, B is 2, A is 4, C is 3, D is 1 and 

E is 5. 

So, from this list of preferences, I can read write it as a reordering of my ranking and 

now, we are asking when whether there are pairs like this 2 and 1. So, 2 appear before 1 

and my friends list, it appears after 1 obviously in the original list, so this is an inversion. 

So, 2, 1 is inversion, likewise 4, 1 is inversion, so it is 3, 1, so we have these three 

inversion, whether we have write them as 1 of 2, 1; 3 of 3, 1, because these are pairs, so 

it was in order is not important, these pairs of movies a rank oppositely by you and your 

friend. 

And the final inversion in this particular example is 3 and 4, so 3 and 4 appear in 

opposite order, you can check therefore, every other pair for example, 4, 5 or 2, 3 or 2, 4 

the order is present. So, there are four inversions in this particular list between your 

ranking and your friends ranking and our goal is to count this number of inversions given 

to permutations. 
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So, another way of thinking about this, though it will not materially affect how we 

compute it, is to draw this kind of a graph. So, you take the rankings to start with as the 

correct order on top. So, you have one set of vertices 1 to 5 and then, you have to 

permutation of the vertices 1 to 5 listed in the order of your friends ranking. And then, 

you combine 1 to 1, 2 to 2 and so on, so that you build up in the graph which as if you 

have 5 on top and 5 in the bottom, you have 5 edges, if you have n and n you have n 

edges. 

Now, in this graph every time a line crosses this indicates a mismatch, so 2 has a gone 

ahead of 1, likewise 4 is gone ahead of 3 and so on. So, there are 4 crossing is between 

these lines and that really corresponds to four inversions in this example. So, now, there 

is a very simple brute force way to check, because we know that every inversion is a pair 

i j, such that j appears before i my friends list. 

So, we can just check that, we can just check for every i and every j which is different 

from i, whether i and j is an inversion and this will give us a Brute force order n squared 

algorithm. So, this actually enumerates all the inversions, it is checks every possible 

pairs and if it is an inversion it says yes, if it is not an inversion it says no and then, you 

count how many inversions you solve. And we saw and that we can actually in the worst 

case have complete set n into n minus 1 by 2 inversions. So, this will exhaustedly 

enumerate every inversion in check it with yes or no. 
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So, our whole is to give a more efficient algorithm, so we will move to this divide and 

conquer paradigm. So, suppose your friend’s permutation, our permutation always 1 to n, 

so we can just assume it is given. So, what is early interesting is our friends permutation, 

so the friends permutation is some order of 1 to n jumbled up, let us call it i 1 to i n. 

So, now, we will do something similar to merge sort, so you will take this list i 1 to i n 

and divide in two parts. So, we have i 1 to i n by 2 which is the left and i n by 2 plus 1 to 

n which is the right. So, divide and conquer is a very simple minded strategy, you can 

only do one thing, you can solve this and then, you can combine. So, this is the basic 

paradigm, so you have to divide, solve the divided parts and combine. 

So, we will recursively assume that we can count the inversions in left and right. Now, 

what is left to count are those inversions which cross the boundaries. So, is there at j, i 

pair that is looks like this. This would not be counted when I count only the left, because 

i is not in the left, it will not be count only in the right, because j is not in the right. So, 

there would be an inversion give i is less than j as numbers, but j appears in the left, i 

appears in the right. 

So, this has to be done after we are solve the recursively, so this is basically the 

combinations step, how many elements in the right are bigger than elements in the left. 

Anything on the left, if it is smaller than something on the right, then it is not an 

inversion, because it is already in the correct order in the overall list. But, it something 



on the right is bigger than something on the left, then that is an inversion, we have to 

count all such pairs. 
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So, in order to solve this, we will make or recursive procedure a little stronger than just 

counting. So, we will assume that not only doings count in the two halves; we sort them 

well we were counting. So, what happens is now we have divide our problem in two 

parts and then, we come back, so this is my L and this is my R, I have now sorted L 

sorted R and I have a counters, so I have a count L and a count R. 

Now, the factors these are sorted, means that I can do some kind of merging. So, I can 

use a version of merge. So, we will describe a version of merging which allows us to 

count. So, this gives as other count and then, we have three counts the left count the right 

count and the count return by merge and so what you want to a merging is to actually 

check how many elements on the right or bigger than how many elements on the left. 
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So, how do we do this? So, what is the principle of merge and count? So, remember that 

an inversion across L and R consist of an element in R. So, we have an element in R and 

an element in L, such that this number is smaller than this number. So, we have some i 

here and some j here, such that i is smaller than j. So, what will happen in a merge 

procedure is at some point, so we are merging, so we pick the smaller of these two and 

pulled out. 

So, any time now if I had pulled out an element from here; that means, at this current 

pointer I have merge up to this an up to this. So, there are two pointers in my list left and 

right, sorted list up to which the merged is proceeded so far. Now, at this point I choose 

the right hand side element, because it is smaller. So, if it is smaller than, it is smaller 

than everything which I not yet looked at, that is why, because it is smaller than the first 

element I am looking at in L. Therefore, smaller everything else in L, because everything 

else in L sorted ((Refer Time: 13:04)). 

So, therefore, this entire segment which is left in L, corresponds to elements which are 

smaller than the current element am pulling out of it. In other words, this element in R 

contributes as many inversion as there are elements in L at the point when it is extracted 

in the merge process. So, whenever I add an element from R to the output, it is inverted 

this pick to the all the elements currently in L. So, I should add the current size of L to 

the number of inversions. 



So, this gives as are merge and count, while we are merging, every time we pull from the 

left, there is no inversion, every time pull in the right, we see how many elements as to 

remaining in the left and that many items need to be added to our inversion part. 
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So, here is a merge procedure for merge and count which is very similar to the merge 

procedure in the basic merge set. So, we had two list A and B to be merge, both are 

sorted and A has m elements and B has n elements and we want to produce an output list 

C, which has m plus n element. So, we begin with signing of pointers to tell us how call 

we are born on each list, we just set as 0. And now, we have to keep track of the number 

of inversions, so we keep a variable called count which is initialized 0, the total number 

of inversions which have been seen so far. 

So, along the something is there to move into C, we move something, so there are two 

cases, the first cases to move from A. So, I have B is empty, j is equal to n are the 

element of the head of A, A i is smaller than equal to B j in which case we do the usual 

think, we copy the ith element of A into C k and then, we increment both again n k. The 

other cases when either A is an empty, i is equal to m or B j as a smaller value, in this 

case we have possibly an inversion. 

So, how many inversions do we have, we have exactly m minus i inversions, we have as 

many inversions as so this is i, we have as many inversions as are elements currently in 

A, which is n minus 1. Now, notices that in the specific case where we are copying from 



B, because A is empty, we have i equal to m. So, this would actually B 0. So, they should 

not be an inversion, if they are just duplicating B and C, because A is exhausted. 

So, that is also taken care of the m minus i being 0, so although we are updating the 

count, we are assuming not adding in it. So, only we are doing an nontrivial merge that is 

when we are moving something from B, when A is still not empty to be increment the 

count, we are moving because we are run out the elements in a count to remains these 

same. So, the end of this merge procedure, we return these number of inversions we saw 

plus the merge list. 
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 So, now, we incorporate or merge procedure into the merge sort with counting as 

follows. As usual, we will sort in general an array from some left index to some right 

index, because we would sort different segments and different times. So, if the current 

segment is to be sorted as length 1, then there is nothing to be done, we just set up a new, 

the sorted segment is just the value that we see and there is no inversion, because it is 

only one value. 

On the other hand, if it is bigger than 1, then we compute the midpoint and we do these 

two recursive calls, each of them will return the count on the left and right respectively, 

then we call or merge procedure and get a count from the merge section. So, then our 

total number of inversions is the count from the left and the right count from the merge 

together and the new array is the one return by the merge. So, this is the very simple 



extension of merge sort which allows us to count inversions which is useful for a 

recommendations system. 
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So, the analysis of course, given that the structure resources is similar to merge sort, the 

analysis is similar, we have this recursion for the time taken on n steps. So, T of 1 is 1 

and T of n is 2 times T n by 2 plus n exactly. So, merge sort because it only take as a 

linear time to merge sort with count. So, you merge with count it takes a same amount of 

time as merging without counted, so we solve this and we get n log n. 

Now, an important think to note is when we did are Brute force calculation, we looked at 

every possible pair and decided whether are not to is an inversion, so they actually 

explicitly counted the inversions to get the answer. Now, here we are doing it an n log n 

which is potentially much smaller than the number of inversion you want to get. So, we 

are actually counting the number of inversions or estimating are actually calculating how 

many inversions are there without actually counting them manually one by one. Because, 

they could be a n squared inversions, but use there are n squared inversions, we could 

find that out in n log n time. So, we not manually counting every step, rather we are 

getting this through a recursive calculation. 


