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Lecture - 35 

Heaps 

Let us now look at Heaps. 
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So, recall that our goal is to implement a priority queue. In a priority queue, we have a 

sequence of jobs that keeps entering the system, each job has a priority. Whenever, we 

are ready to schedule a job to execute, we must pick up not the latest job or the earliest 

job that we got, but the job which currently has the highest priority among the waiting 

jobs. Therefore, we need an operation called delete max which will search for the highest 

priority job among those that are pending and schedule it next. And we obviously, have 

an insert operation which adds these jobs dynamically as they arrive. 
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So, we saw last time that a linear structure will not allow us to simultaneously optimize 

these two. We end up with an order N operation for delete max or an order N operation 

for insert. Then, we saw trivial two dimensional array which gives us an N root N 

solution that is the root N operation for each of these, so our N operations is order N to 

N. But, we said that we will find a much better data structure using a tree of a special 

type called a heap. 

So, the heap is going to be a balance tree whose height is logarithmic in the size that is if 

flag N nodes in the tree, the height that is the number of edges from the root to any leaf 

will be log N. And with this, it will turn out the both insert and delete max are 

prepositional to log N and therefore, processing N jobs will take time N log N as 

supposed to N root N for the array or N square for the linear representation. We also said 

that this heap in principle is flexible and can grow as large as we want. So, we do not 

have to fix in advance the size of the heap that we need to keep. 
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So, let us start looking first at what a heap test. So, a binary tree is a tree where we have 

a root and every node has 0, 1 or 2 children. So, binary trees in general can have arbitrary 

shapes. So, we could have binary trees which look like this, where the root has 1 child, 

this has 2 children or it could look even more skewed in one direction. So, binary trees 

can have very strange shapes, but a heap is a binary tree which has a very specific shape, 

where we fill up the tree nodes or we add the tree nodes in a specific order. 

So, first we start at the root, then we must add the left child of the root, then the right 

child and this way keep going level by level left to right. So, we add this node, then we 

add this node, then we add this node. So, once I know how many nodes are there in the 

tree, I know precisely what the shape is, so the shape is fixed. So, that is the first feature 

of the heap that if I have a heap with n nodes, then the shape of the tree is 

deterministically fixed by this rule that the n nodes must be inserted top to bottom, left to 

right, then we have a value property. 

So, the value property says that... So, what does happening in the tree is that we have 

nodes and each nodes is the value, so whenever I see a node with value v 1 which has 

children v 2 and v 3, then what we want is, this is bigger than or equal to v 2 and bigger 

than or equal to v 3. So, among these three nodes the largest one must be v 1, so this is 

what is called the max heap property. So, this is the local property, it just tells us at every 

node look at that node, look at the 2 children, the node must be bigger than it is 2 

children. 
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So, here is an example of the heap with 4 nodes, so first because it is 4 nodes, every 4 

node heap will have the shape. Because, the first node will be the root, the second will be 

the roots left child, third node will be the right child and the fourth node will start a new 

line, then more over we can check the heap property. So, we see the 24 is bigger than 11, 

24 is bigger than 7. So, this is a valid node for a heap property, 11 is bigger than 10 there 

is no right child, so this is a valid heap, there is no child of 7 at all. 

So, by trivially this is a valid heap node and 10 is the valid heap node for the same 

reason. So, every leaf node which has no children always satisfies the heap property. So, 

once you have a leaf node, then nothing to check. 
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So, here is another heap, this one has 7 nodes, so again the shape is fixed and again you 

can check that this is bigger than 11 and 7, 11 is bigger than 10 and 5 and 7 is bigger than 

6 and 5 and the rest are all leaf node, so there is no problem. So, these are two examples 

of heaps. So, what is an example of something that is not a heap? 
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So, here we have something which is not a heap, because the structure is wrong. So, we 

said that you cannot leaf holes, you must go top to bottom left to right, so there should be 

some node here, before you add the node in the right. So, where is this node? This node 

is missing, so this structure is not right. 
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For the same reason, this structure is also not correct, because we have here something 

which is missing, a node at this level and we started a new line. So, both of these are not 

a leaf for structural reasons. 
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Here on the other hand, we saw something which is a valid structure, in fact we saw heap 

before which has the structure, the problem is with this node. So, we want 7 to be bigger 

than 8 and 5, but this is of course, not case. 7 is not bigger than 8, 7 is smaller than 8. 
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So, this node 8 actually violates the heap property, so something can fail to be a heap, 

either because the tree structure is wrong or because at some node the heap property is 



violated. In this case, node that violates the heap property is 7, because one of it is 

children are actually bigger than the node itself. 
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So, now we have to implement these two operations on heaps, insert and delete max. So, 

let us see how it works? So, first let us insert 12, so insert 12 means I have to add a value 

to the heap. So, the first thing when I add a value to the heap is I must expand a tree. So, 

where do I put this node? So, this now fixed because we know that heaps can only grow 

and shrink in a particular way, so I must add the new node left to right, top to bottom. So, 

in this case if I go left to right, top to bottom I come to this point, now I cannot add 

anything more, so it must come at the next level. 
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So, the first thing is that this is where the new node must come to contain 12. Now, if I 

put 12 into this position, the problem is that I might not have the heap properties satisfy. 

In this case, you can see that the heap property actually face right here, because 12 is 

bigger than it is parent. So, 10 violates the heap property, but notice that this can only 

happen above, so what I mean is that when you insert something it is a leaf. 

So, when you since 12 is a leaf, it cannot fail the heap property below 12, because there 

is no child below 12. If at all the property fails, it is because the parent of the new node 

has a value which is too small. So, there is a simple way of fix this locally at least and 

that is to exchange these two. 
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So, I exchange this 12 and 10 and now I fix the problem here, but now I change the value 

at this point. So, I have to look at this configuration to see whether what I move the 12 

into violates heap property or not and here again you can see that there is a problem 

because 12 is still bigger than it is parent. 



(Refer Slide Time: 07:20) 

 

So, then I exchange that, so now I exchange this, now in the process what is happened is 

that well was gone from here to here. And now, the first thing we have to convince 

ourselves is that the heap that we local heap property that we just fixed does a need any 

further fixing. In other words, we have to guaranty that there is no problem and the other 

side between 12 and 5 and this cannot happen, because we originally had 11, 5 and 

something here, we know that 11 was bigger than 5 and it to bigger than the something, 

then we did and exchange and be bought at 12 here. 

So, if at all the problems only would be 11 and 12 and since if there is a violation well 

wish bigger than a 11 that is wide is the violation, but 11 is node to be bigger than the 

other side. So, if I move 12 to the top of this three node structure, it cannot be smaller 

than other side. Because, the root currently is already bigger than the other side, the only 

reason I move 12 of this because it is still bigger than that was ((Refer Time: 08:18)). So, 

then in an actual when I do and upward swap like this I can be sure that do not have to 

look on the other side I just keep looking up. 

So, now I got 12 up to this point, so now I need to check whether there is any further 

violation and it turns out the 12 is smaller than 24. So, I can stop, so this was the result of 

inserting 12 into this heap. 
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Now, I can insert a new node 33 just to convinces as we know how to do, so as before if I 

insert 33. So, this was the result of the heap after 12 and now I have inserted a 33 here, 

so it has to be the right because that is a next node in the structure and I put the value, but 

it violates the heap property would be 11 and 33, so I swap it up. 
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And then again I have a violation here, so I swap it up again. 
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Again I have a violation here, so I swap it up again. 
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And now I reach the root, so actually it is become the biggest node and now I can stop. 
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So, how long does this take? So, every time we saw every time we do an insert, we start 

at a leaf node a new leaf node that we create and we walk up to the root. So, the worst 

case of such a thing it depend on the worst case height of the tree, we have to bound the 

height of the tree, the height of the tree by definition if I have a tree like this. So, the 

height of the tree is a longest search path, the length of the longest path from the root to 

them off. 

So, we can either counted terms of number of edges or in number of vertices is ((Refer 

Time: 09:47)) vertices it this soon would be 4, if it is edges it will be 3 does not really 

matter, but the point is that the longest such path will determine the complexity, because 

the long at the path the more times I am in need to swap on the via. So, what can say 

about the height of the heap, so the first thing to notice is that in a heap because of the 

way that we are done it. So, at the root node we have at level 0 we call this level 0, we 

have exactly one node at level 1 at most we have 2 nodes. 

So, we can write is as 2 to the power of 0, this is 2 to the power 1 of course, each of these 

will have 1. So, we will double, so at every level the number of nodes doubles, because 

each of the previous level has two children at most. So, we have to swap, so in this way 

we have number of nodes at level 0 is 2 to the power of 0 at level 1 is 2 to the power 1 at 

any level i is 2 to the power i. So, if you have k levels, then the levels are 0, 1 up to k 

minus 1 from work we just said that is 2 to the 0 plus 2 to the 1 plus 2 to the k, the k 

minus 1 ((Refer time: 10:55)). 



So, it will be 2 to the 0 plus 2 to the 1 plus 2 to the k minus 1, now this and one way to 

think about it this is a binary number with k 1s. So, binary number k 1s is just 2 to the 

power k minus 1, in other wards if I fill up a binary tree for k levels I will have at most 2 

to the k minus 1 nodes. So, therefore, the number of nodes is exponential are number of 

levels. So, therefore, if I have the number of nodes in the number of levels must be 

logarithmic ((Refer Time: 11:31)). 

And the number of levels is what determines, the logarithmic length of the longest path 

and therefore, insert an any heap will take time log of N, because there is every path is 

going to be guaranty to be of hide log N. 
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So, the other operation that we need to implement for a priority queue is to delete the 

maximum. So, the first question is where is the maximum in a heap? So, the claim is that 

the maximums always at the root, why is that because if I start anywhere I know that 

among the any 3 nodes the maximum is that the top. So, if I look at 33 for example, 33 is 

bigger than 24 and 7, but inductively I know that 24 must be the biggest node in this sub 

tree and 7 must be the biggest node in the sub tree. So, therefore, 34 is 33 bigger than 

both it must be the biggest node overall in sent directly. 

So, the module is the mod 3 maximum values already at the root. So, now the question is 

if the maximum values at the root, how do we remove it from the tree efficiently. 
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So, let say you remove the maximum value, so then this leaf has to the hole, we do not 

have any value at the root now, at the same time because we have remove the value we 

have reduce the number of values in the tree by one. But, we said that the structure of the 

tree is fixed, if you reduced by one we cannot remove the root, we must remove the last 

node going on this left to right top to bottom order. 
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So, we must in fact to remove the node here this node as to go, so now we have a value 

which is homeless, it does not have a root node to belong to and we have a home which 

is empty. So, what we will do is we will move this the 11 to the root. 



(Refer Slide Time: 13:25) 

 

Now, unfortunately because we are disrupt the heap order by doing this taking some 

arbitrary node from leaf moving into the root, we do not know whether we have the heap 

property satisfied or not. Now, the only place where the heap property can be violated at 

the root, because everywhere else the local neighborhood does not touch that it is 

operation, you only other place their neighborhood was touch to is here, but always did 

was remove a node. If you remove a leaf then it cannot violate a heap property, because 

for the upper node it is already bigger than both this tree. 

So, this... So, the only place we could have a violation is here and indeed we do, because 

11 and 24 on the wrong of them. 
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So, we will start now the storing the heap property downwards, when we inserted we did 

upstairs, it start here and look at this and then we will look at both directions and we take 

of the bigger one of the two and move it up. So, we swap with the largest child, suppose 

for instance that this admin not 7, but 17 then what could I happened, if you are move 17 

up his viewed about 17 the 11 and 24 and this would not a fix the heap property, because 

this should see they want. 

So, we must take the bigger of the two and move it up, because among these three the 

biggest value must be at the top that is the definition of the max heap property, so we 

exchange the 11 and the 24. 
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So, 24 goes up to the root and then 11 has come in this direction, so we must second 

check whether this part which has now been disturb satisfies the heap property. And of 

course, in this case it does not because 11 and 12 are not in the correct thing. So, again 

among these 3 I have to take the maximum value up, so I take the 12 up and move the 11 

down. 
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And now I have to check this section whether this heap property is satisfied, here it is 

satisfied now we want stop. So, in delete max I start from the root and I walk 

downwards. 
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So, supposing we do this again, then I remove 24. 
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And then I move the 10 from the last leaf to the top. 
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Then, I again have to fix this problem, so I exchange the 10 and the 12. 
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Then, I have to look at this and fix these problems the biggest of this trees is 11 I fix the 

10 and the 11 and I get it. 
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So, now by making sure that I take the biggest one of again I do not walk down the other 

directions. So, I am always walking down as single path, so once again just like insert the 

cost is proportional to the height. And since we know that in a heap the height is 

logarithmic, delete max is also an order log N operation. 
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So, what we have done is, we have shown that a heap actually does both delete max and 

insert in log N time. Now, and other very nice property about heaps is that we do not 

actually need to maintain a very complex tree likes structure, we can actually do heaps in 

arrays to do this we observe that we can canonically number all the nodes in a heap, we 

start number in the root by 0, the first node we fill below the root by 1, the other child 2 

and so on. 

So, I have a numbering 0, 1, 2, so I can actually represent this heap as an arrays heap 

which has this is 0, 1, 2 and so on. Now, in this the claim is the define at a position i, so 

if I have some position i, then the children of this are 2 i plus 1 and 2 i plus 2 you can 

check this everywhere. So, therefore, if I want to actually go to a heap and ask something 

about the heap property, then I will just look at the position i, then I will jump ahead 

position 2 i plus 1 and 2 i plus 2. 

So, completely using the array alone within the array I can look up the children of a node 

and by inverting this operation, if I look at j minus 1 by 2 and take the floor of that then I 

will come back this. So, with the child is 2 i plus 1 2 i plus 2 then the parent is j minus 1 

by 2 and then it might be fractional, so take the integer parts. So, floor means take the 

integer part of j minus 1 by 2. So, this is not j minus half, so it has j minus 1 the whole by 

2. 

So, for example, for 12 j minus 1 is the 11, the 11 by 2 is 5 and half floor of that is 5, so 

the parent at 12 is 5. So, you can check that this is form, so therefore I can now do all my 



heap manipulation with in an array, which is very convenient I just have to write an array 

and then whenever I do these operations which involved walking up and down the heap I 

will just uses 2 i plus 1 2 i plus 2 formula what are use this floor of j minus 1 by 2 

formula. 
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So, how do we start this whole process of, how do we build a heap from a given set of 

values. So, a very naive strategy would work as follows and given a set of values n 

values x 1 to x n. So, I start with an empty heap and then I insert x 1, so I have a heap of 

size 1 then I insert x 2, so now I heap of size 2 and so on. So, I do n inserts and each 

insert takes log N time at most, so we will take less time we will take log i time if I have 

insert it ((Refer Time: 18:39)), so for but let us take log N as an upper bound. So, overall 

if I insert these N elements I will build the heap also and N log N time. 
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Now, in fact it turns out that there is a better way to do this, so if I look at any array I can 

think of this as a heap I can just imagine that it is ordered. Because, every array as a heap 

interpretation, I can imagine that this is how the array looks, if I think of it the heap of 

course, it does not satisfy the heap property. But, but this is how it would look if I 

arranged as the heap. Now, in this anything which is at the leaf level does not need to be 

check, because it has no children all leaves trivially satisfied the heap property. 

So, I need to start fixing things only at the previous level, so I work back to this. So, I 

come here and x 3 I fix the heap property with respective it is children, when at x 2 at fix 

the property with respective each children, in the process something a up and down to 

only one level, then I will come to x 1 and I will fix it is problem, now this might 

involved 2 levels. So, for each level k minus 1 k minus 2 that it. So, leaves are at level k 

at level k minus 1 k minus 2 on up to the root, we fix the heap property. 

So, as we go up fixing the heap property means, walking down like we did for delete 

max, walking down to the leaf. So, each level we go up the length of this path increases 

by 1, but because the levels double as we go down they have as we go up. So, the 

number of nodes for which we have to check this extra length path goes down by fact 

row. So, now if you do the analysis should we are not going to do exactly, it turns out at 

in this process the number of updates you need to make a heap is actually only order N. 

So, if you use this bottom up heapification, then it will be an order N procedure. 
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So, just to get a guider picture what is going on, so let us assume that we had 15 elements 

I had list and we actually through it do it out like this and the clam is that these n minus 2 

node n by 2 nodes, which is roughly have it is actually 8 out of 15 already satisfied the 

heap property, so this is nothing to be done. 
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So, then I go one level up and I fix these, when I fix these I have to do it for 4 nodes and 

each of them the repair will involve one swap at most or no swaps, worst case will 

((Refer Time: 21:02)) so on. 
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Then, I will up one level and now for each of these nodes I will have to possibly go 

down 2 paths of length 2. So, each of them will involve a height 2 repair that is 2 step of 

thing better than all from 4 nodes I have gone to 2 nodes. So, the only half is mini nodes 

which required only one step node. 
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And then finally, when I go to the root I might have to do kind of fix which involves 

swapping down to the last leaf, so 3 swaps. But, this only one node which does this, so 

therefore since there is trade of that the number of nodes to be fix is halving and the 

length is only increasing by one it turns out that this whole operand needs only order N 

time. 
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So, to summarize go to we have seen is that heaps implement priority queues using 

special balance trees, in these tree both insert and delete max or logarithmic we can use 

this bottom up heapify to actually build a heap and order N time. And what is most 

useful is that this heap can actually be manipulated very simply as an array, now one 

thing which we can do is to invert the heap condition. So, we can say that whenever be 

see v 1, v 2 and v 3 we want v 1 to be smaller than both v 2 and v 3. 

So, this is what is called a min heap, what we have been doing, so for is a max heap. So, 

sometimes you want to keep track of the smallest priority and remove the smallest 

priority item, just think of how for example, you rank people in an exam. So, you are 

somebody if in a competitive exam, the smaller the rank the higher the priority. So, if 

you have rank 1 then you have highest priority. So, this some situation it is natural to 

think of smaller numbers is higher priority. 

So, you want have to do anything very much, we just have to change the heap root to be 

minimum. So, that the each node is smaller than as two children and then everything 

would work exactly as we have done, so for. So, we have two types of heaps, you have 

max heaps and you have min heaps and all the differs in max heaps and min heaps is the 

heap condition on the nodes and the corresponds you whether the operation you 

implement is delete min and delete max. 


