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So, we are looking at the problem of constructing a minimum cost spanning tree in a 

weighted graph. We said there we have two basic strategies one could think of to do this. 

The first one leads to an algorithm called Prim's algorithm, and the second one leads to 

an algorithm called Kruskal's algorithm. So, in this lecture we would look at Prim's 

algorithm. 
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So, the problem domain is the following. We have a weighted undirected graph. So, V is 

the set of vertices, E is the set of edges and w is a weight function. We assumed that G is 

connected, because G is not connected and there is no way to build a spanning tree. 

Spanning tree, remember is a sub set of the edges which connects all the vertices in g. 

So, g is not already connected, then there is no way we can actually connect using a 

subset of edges. So, G is a connected weighted undirected graph, and now we want to 

identify spanning tree with minimum weight. So, this strategy in Prim's algorithm starts 

with the minimum cost edge, and keep extending the tree with the smallest edge 



connected to the current tree. 
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So, here is a kind of high level version of prim's algorithm, right. So, we start with 

minimum cost edge and we add it to the list. So, T E is a list of edges that form a tree. 

So, we will describe the tree as a collection of edges, and then we note that we have 

added i and j to the tree. So, i and j are now connected. So, this leaves n minus 2 vertices 

which have to be connected. So, we have to do something n minus 2 times. So, n minus 2 

times we have to add an edge. Each time we add an edge; one more vertex would be 

connected. So, we know that after that many edges, you will have a tree. Remember that 

the tree has totally n minus 1 edge. So, we have added the first edge by starting with a 

minimum cost edge. So, we can add n minus 2. 

So, what we do is, n minus 2 times, we choose the smallest edge which has one end point 

in the tree and one end point outside the tree. So, this is a vertex v now which is not 

connected to the tree. So, we connect it. So, we append this new edge to our list of tree 

edges and we add this vertex to our list of tree vertices, and at the end after doing this n 

minus 2 times, it claim as we connected all the edges, we have a spanning tree and more 

over the claim is because we are choosing the minimum cost edge to add a edge point. 

The overall thing is a minimum cost spanning tree. Of course, we will not prove all this, 



but this is what we aim as prim's algorithm, right. 
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So, why do we need to prove something? Well, you can see that like Dijkstra's algorithm, 

prim's algorithm is a very greedy algorithm, right. At each point, we have to decide how 

to extend the tree. So, we look in the neighbourhood that the current tree, we look for the 

nearest vertex which is connected to the tree, but the shortest edge and we add it. So, this 

is a local choice, and then we keep making these sequences of local choices and 

ultimately, we arrive globally at a spanning tree and out claim is globally we have built 

the best possible tree, right. So, this is always an example of a greedy algorithm where 

you make a sequence of local choices. Never go back and reconsider them and finally, 

achieve a global optimum and very often as we mentioned before with the Dijkstra's 

algorithm, such a strategy may not give you the right thing. So, you have to always 

justify that this works. 
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So, in order to prove prim's algorithm correct and indeed, we will also use this to prove 

Kruskal's algorithm, correct later on. We prove a very useful remark all the minimum 

separator lemma. So, let us assume that we have this weighted undirected graph and we 

look at the set of vertices v, right and we assume that it is divided into two paths, right. 

So, this is called partitioning. So, there are two separate disjoint paths which I will call u 

and w, and I am assuming that both of these are non-empty. So, there is at least one 

vertex u and one vertex w. Now, let me look at the smallest edge which goes across this 

partition. Remember that the whole graph is connected. So, they must be a way to go 

from u to w. Some of all the ways I can go from u to w. Let me check the smallest edge. 

Let me call the end point small u and small w. 

So, now, the claim is that every minimum cost spanning tree must include this edge. This 

is a very powerful claim. Of course, there is a side condition which is that we are 

assuming for a moment at no two edges have the same way. We will see later on how we 

will relax this condition, right. So, under the condition that no two the edges at the same 

weight, the minimum separator lemma is that whenever you separate we in to do parts 

which are not empty, then the smallest edge connecting these two parts must lie in every 

spanning tree, every minimum cost spanning tree. 
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So, now why is the case? So, let us assume that we have these two parts. So, I will draw 

one part say this yellow thing and let us call this u and which have not drawn a boundary 

for, this is v, and this is w. 
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So, now let us look at the smallest edge connecting u and w, right. So, now the claim is 



that this must be in every minimum cost spanning tree. So, suppose it is not. So, then 

suppose there must be some minimum cost spanning tree, because we know that the 

graph is connected. So, there are many spanning trees unless assume that the minimum 

cost spanning tree T which does not include this edge.  
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So, in that tree u must be connected to the tree, because any spanning tree connects all 

the vertices. So, there is a red path from u to w in my hypothetical spanning tree T which 

does not include this edge. So, now the claim is if I take that particular tree, and then I 

remove the edge u prime v prime and replace it by the edge u, we get a new tree, right. I 

get tree T prime . So, T prime is T minus edge u prime v prime plus the edge u v, but now 

by assumption u v was the smallest vertex, smallest weight edge going from inside u to 

outside u, right. So, therefore, u v has weight strictly less than u prime v prime. 

Therefore, T prime has a weight strictly less than T and you can check that everything 

else is connected because anything which have connected, so u prime is now connected v 

prime is long term and therefore, all other vertices which connect by T remain connected 

by T prime. Therefore, T prime is a valid spanning tree. It is of smaller cost and 

therefore, T could not have been a minimum cost spanning tree. So, this is a proof that 

the smallest cost edge from inside the partition to outside the partition must lie in every 

minimum cost spanning tree. 
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Before we move ahead, I just want to make one small remark. So, we would have to be 

careful when we prove this lemma a little bit. So, it is true that among all the edges going 

from inside to outside, u v is the smallest one. So, we might be tempted to just say, so uv 

is the smallest one, pick any edge in my given tree T prime given tree T which goes from 

inside to outside, then replace. So, for instance, we might accidentally pick up this edge 

and replace it with this edge. Notice by picking up this edge and replace it with this edge, 

then perhaps there is no other way to get a double prime, right. So, it is very crucial that 

we choose that correct edge to replace. So, we have a target and we want to introduce u 

to v. Therefore, we must follow the path in T from u to v and that path must start inside 

and go outside. So, it must cost the boundary somewhere, and this is the edge to replace. 

So, we should not make the mistake of replacing some arbitrary edge. We must replace 

that edge which allows us to go from u to v in the hypothetical tree, not at to make the 

new tree. 
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So, once we had this lemma, the correctness of prim's algorithm is very obvious. So, at 

every stage remember in prim's algorithm, we have built this tree TV which consists of a 

few edges, and then we have everything just lying outside and now among these we want 

to connect one of that, right. So, if you think of this said the set inside is my u and the set 

outside is my w, and we are picking by assumption in prim's algorithm, the smallest 

weight edge which connects u to w. By this minimum separator lemma, this edge must 

line every spanning tree. So, the algorithm, the prim's algorithm, the edge that the prim's 

algorithm picks is in fact the edge that the lemma forces us to pick. So, therefore, prim's 

algorithm is definitely correct. 



(Refer Slide Time: 08:35) 

 

So, in fact we can use the lemma to make prim's algorithm little more relaxed. Recall 

that narrow regional formulation we started with the smallest edge, but now it is easy to 

see that if I take any vertex, right and I look at all the edges going out of it, then I can 

take u to v the vertex itself and I can take w to be everything else. We set minus this 

vertex. Then, I know that the smallest edge which goes from v to this edge must be in 

every spanning tree. In other words, if I start at any vertex and look at the smallest edge 

attached to it, I can start with that because that must be in every spanning tree by the 

minimum separator lemma. 
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So, this gives us the following algorithm for prim's strategy. So, we start with any vertex. 

Now, for each vertex which is not in our current set of tree vertices, we maintain the 

smallest edge weight from that vertex to some tree vertex is called that distance of v and 

also because we want to build up the tree the set of edges, we remember where that edge 

goes to. So, we remember it does have a neighbour, right. So, if I have some tree at a 

given point and I know that for this v, this neighbour u is the smallest edge connecting 

into v, then here I will keep its as distance as the weight of the edge, I will keep it as 

neighbour as u. This will allow me to keep track of which edges are added. So, now, at 

every stage I look for the smallest vertex which is outside in terms of the distance. Then, 

I add it to the set and I update it as neighbours distances and values, right. So, this is very 

similar to Dijkstra's algorithm, right. The only thing is the update of the distance does not 

involve adding my distance plus the weight. It only involves considering the weight. So, 

when see the algorithm itself, we will see the parallel Dijkstra's algorithm even clearer.  
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So, here is the final algorithm for prim's shortest or minimum cost spanning tree right. 

So, you initialize all vertices to be unvisited. This is the bond thing. We miss them all to 

have no neighbours, because nothing is in the tree. So, they have no neighbours in the 

tree and they are all distance infinity. This initializes the tree. Now, I pick some initials 

starting vertex a 1 and mark it to be visited, but I do not have any edges, right. So, now 

for each edge going out of 1, I update its status. So, I say for every edge one of the form 

1, j, I said that the neighbour of j in the tree, so the tree now consists of just this one 

vertex and trivial tree which has one vertex and therefore, 1 -1 0 8, right. So, the 

neighbour of j is 1 because that is its connection and the distance is the weight of this 

edge, right. So, this is my first step. 

Now, I have to add the remaining n minus 1 edges to my tree. So, n minus 1 times I do 

what you do in Dijkstra's algorithm in different format. You pick that u which is not 

visited and whose distance is minimum. Mark it as visited. Now, you know how it is 

connected to the tree. So, you add the edge which tells us how it is connected u and 

neighbour of u. This edge we add to the set of tree edges. Now, for every edge out of u 

whose neighbour is not visited, if the current distance to the tree is more than the weight 

of this edge, so basically I had now added this u and there is another vertex v and it 

claims to be connected somewhere else, right. So, maybe this distance d and this distance 



d prime. Suppose d is bigger than v, then now that this is in the tree, now that u has been 

added in the tree, now v is connected by a smaller edge to the tree, right. So, the distance 

that I currently have for b is bigger than the weight of u v edge. Then, I will replace that 

weight by the weight of the u v h and I will say the neighbour of v is now u, so that when 

I had v to the tree, I will add the edge u. 

So, this is exactly what Dijkstra's algorithm does except for this update as this update we 

had d of u plus the weight of u, right. So, we in Dijkstra's algorithm, we want cumulative 

distance. Here we want one step distance from the nearest node in the tree, but otherwise 

prim's algorithm is basically a restatement or Dijkstra's algorithm with a different update 

function and additionally we have this thing that we could have done it in Dijkstra's also. 

We could have maintained the Dijkstra's algorithm the path, right. So, had we maintained 

the path, it will be exactly like this neighbour relation here. We want to know when these 

edges added to my shortest paths set, the burn set, why it was added, right. So, here we 

are doing that we are adding it and we are also remembering the edge to that. 
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So, let us try and execute before during the complexity analysis of these things. So, 

remember we can start anywhere. So, let us start at 1, right. We start at 1 and we mark 

our tree consisting of form. Now, since this is an edge start at 1, we have to update the 



values in the neighbours of 1, namely at 2. So, we mark for 3. We say that is the distance 

which we mark in green, so the tree is 18 because the tree consist vertex 1 and it is 

neighbour in the tree which is at the distance is the vertex 1. Similarly, the other 

neighbour of 1 is 2. So, we will say is its distance is 10, and its neighbour is 1, right. So, 

everywhere else I have not mentioned it explicitly, but everywhere else the values are 

minus 1 and sorry, infinity and minus 1. So, this is infinity and neighbour is minus 1. So, 

this is the default value. So, wherever the default value is present, we will just leave it 

out indicating that the value is effectively not been cyclic. We know it is a connected 

graph. So, we will eventually set it. So, you do not have worry about it, but in this 

discussion we just leave it out. So, we have these two candidates now which are not 

visited and which have some reasonable distance associated. So, we will pick smaller 

than 2. So, we pick this one which is 10, and therefore at a next step we visit the vertex 2 

and we add this edge 1 to 12. 
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Now, having added 2, we have this update. So, we look at the neighbours. So, the 

neighbours of 2 are the vertex 3 and vertex 5. So, for the vertex 2, we have a new 

distance 6. So, if you go via to the distance of 3 to the tree 6 and there it could be 

connected to 2 which is 6 is smaller than 18, right. So, 18 was earlier best estimate of 

how far 3 were in the tree. 
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So, you will replace 18, 1 by 6, 2 indicating now the vertex 3 is 6 distance away from the 

tree, and if it were to be connected at the distance, it could be connected to 2. Similarly, 5 

which was earlier unlabelled, now becomes labelled as 22 indicating that its distance is 

20 from the tree and its neighbour in the tree is the label vertex v. Now, we again pick the 

smaller of the two. So, we will pick this vertex 3 to add to the tree, right. 
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Once we add it, you will obtain the status of 4 because that is the only new label we do 

not update the status of 1 because 1 is already been added to the tree. We only look at 

those neighbours of tree which are not visited. So, now 4 gets the distance 70 with the 

neighbour 3, and then among these two, now 20 is smaller than 70. 
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So, we will add 5 to our tree, and then we will update the status of 6 and 7. 
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So, 6 is now distance 10 with neighbour 5, 7 is also is distance 10 with neighbour 5. 

Now, we have two vertices with distance 10. We could pick either one. So, let us for 

example pick 7. If we pick 7, then we add it to the tree and now, we update the status of 

the 6. Earlier it was a distance 10 with neighbour 5, but now it is a distance 5 with 

neighbour 6. So, we reduce it with neighbour 7. We reduce its distance and we change its 



neighbour. Now, among 5 and 17, we have 6 as the vertex, 6 as the newer one, and then 

we had finally 4 and this is the tree that we get. This is how prim's algorithm works. It is 

very similar to Dijkstra's principle but it uses a very different update. 
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So, the complexity also is similar to Dijkstra's algorithm. We have an outer loop which 

runs n times order n times because we have to add n minus 1 edge to form that tree and 

each time we add vertex with the tree. Now, there is this order n scan in order to find the 

minimum cost vertex to add. So, we already saw this is what dijkstra's algorithm to find 

the minimum distance vertex to add, and then when we add a vertex, we have to do and 

again a scan to update all the entries. So, we have an adjacency matrix. This will again 

take order n time and therefore, overall it takes order n square. 
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So, exactly as Dijkstra's algorithm moving an adjacency matrix to adjacency list 

representation of the edges allows us to reduce the complexity of the updates. So, across 

the n iterations, we do a total of order m updates because update only according to the 

neighbours, the degree, the sum of the degrees of all the vertices. However, in order to 

bring that the order n square, we also need to able to compute the minimum distance 

efficiently for which we need a heap, right. So, once we have a heap which we will 

examine in a later lecture, the claim is we can find the minimum and update the distance 

in n log time. So, this gives us overall complexity exactly let x of m log n plus m log n. 
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So, this comes from finding the minimum because n time we have to find the minimum 

and this comes from the updates, because we have to do m updates overall. Each updates 

takes log n times, so we get n plus n log n exactly as we did for Dijkstra's algorithm. 
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So, one last point before we leave prim's algorithm. Remember that in the correctness we 



have to use that minimum separator lemma in which we had assumed that edge weights 

are distinct. So, of course we have seen in the example that we executed, we could have 

edges, multiple edges with the same weight. So, how do we deal with this in the lemma? 

Well, we could argue with that you can make that cost to be not just exactly the weight, 

but the weight plus some other term. So, in general we could say that we fix some overall 

ordering of the edges. There are m edges. So, we just number the edges arbitrarily 1 to n 

and we say that one edge is smaller than the edges smaller way if either the weight is 

actually is smaller or the weights are equal, but the index in the ordering is small, right. 

So, e and f we have the weight of uv and the weight of u prime and v prime, but we also 

have the index i and j. 

So, this is some i between 1 to m and this is some j between 1 to m. So, either weight of 

e must be smaller than weight of f or the weights are equal, then i must be smaller than j, 

right. So, this gives us a time breaking rule. So, this will now basically tell us that we can 

always compare two edges and declare 1 is smaller than the other and what prim's 

algorithm will do is pick the smaller, right. 
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So, we want this corresponds to saying is that we are actually giving a strategy for 

choosing when we have two equal things. So, the algorithm says choose that distance 



which is minimum and if multiple use with the same minimum distance, we pick an 

arbitrary point. So, what is meant is to pick an arbitrary point whether it means some 

sense to choose an order among them and go in that order. Therefore, if you choose 

different orderings, then we get different trees. So, therefore we have multiple edges in a 

tree which have the same weight. In general, we may not get a unique spanning tree. In 

fact, you can check if you have all weights the same for example. Basically you have to 

keep adding or dropping different edges and you will have an exponential number of 

trees because an edge could be there in one tree and may not be there in another tree and 

so on, right. 

So, overall the number of possible minimum cost spanning tree could be very large. 

What prim's algorithm does and what Kruskal's also will do when we look at in the next 

lecture is to use a greedy strategy to efficiently pick out one of these possible things. 

Now, if the edge weights are unique, there is not much choice. You have to pick up same 

tree. If the edge weights are duplicated, you can definitely have multiple trees and this 

strategy of picking out the smallest one at each stage will give us a quick way to identify 

one of the smallest ones, but not a unique one. 


