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We now turn our attention to a very interesting and important class of graphs called 

Directed Acyclic Graphs or DAGs. 

(Refer Slide Time: 00:08) 

 

So, to motivate this class of graphs, let us look at a problem where we have a bunch of 

task to perform with some constraints. Suppose, we are going on a foreign trip, then of 

course, we need a passport, we need to buy a ticket, we require a visa probably, we want 

to buy some travel insurance, we probably need some foreign exchange as well and 

perhaps you want to buy some gifts for our hosts. 



(Refer Slide Time: 00:36) 

 

Now, these tasks are dependent on each other in certain ways, without a passport you 

cannot buy a ticket, not even buy any travel insurance. For the visa, you need both the 

ticket and the insurance to be available and without a visa, the bank will not give you 

foreign exchange. And finally, you would not like to buy gifts for your hosts, unless the 

trip is confirmed. So, unless you have all these things including the visa in hand, you do 

not want to invest in the gift. 

(Refer Slide Time: 01:06) 

 

So, our goal is that given these constraints in what sequence should we perform these six 

operations, getting a passport, buying a ticket, getting insurance, getting a visa, buying 

foreign exchange and buying gifts for our hosts. What sequence should we do it, so that 



whenever we want to approach a task, the constraints that are required for the task are 

satisfied. 

(Refer Slide Time: 01:31) 

 

So, as you would expect we will model this using a graph. In this graph, the vertices will 

be the tasks and then you will have an edge pointing from T 1 to T 2, if T 1 must come 

before T 2, in other words T 2 depends on T 1 you cannot do T 2 unless T 1 has been 

completed. So, as an example getting a passport must come before buying a ticket, so T 1 

is getting a passport, T 2 could be getting a ticket. Similarly, you must buy a, have a visa 

before you buy a foreign exchange. So, there will be an edge from getting a visa to buy a 

foreign exchange. 

(Refer Slide Time: 02:13) 

 



So, if we look at the constraints that we wrote this is the graph that we had, so we had a 

constraints with sets we need a passport to buy a ticket, we need a passport to buy 

insurance, we need both a ticket and insurance to get a visa. So, there are two constraints 

pointing to visa. Then, you need a visa to buy a foreign exchange and finally, you said 

we will buy a gift only if the trip is confirmed and at some point at this stage when all 

these operations are done, we can assume that the trip is confirmed, because nothing is 

blocking as getting on the plane. 

So, this is a graph that we have and now our goal is to sequence these six operations, in 

such a way that whenever we want to perform a task, whatever it depends on has already 

been done. So, we can see that you need a passport to do anything, so we always need to 

start with getting a password. Now, there is no dependency between buying a ticket and 

buying insurance as per become constraints we have, so far. So, after password you can 

either buy a ticket first and then buy insurance or you can buy insurance first and then 

buy a ticket. 

So, there is a different ordering possible which does not violate the constraints, on the 

other hand for a visa we need both. So, visa must come after both ticket and insurance, 

but again having done the visa, then there is no constraint between buying the foreign 

exchange and buying gifts. So, you could do the foreign exchange before the gift or the 

gift before the foreign exchange, so there are in this particular example there are two 

possible ways of reordering ticket and the insurance and there are two possible ways of 

reordering the gifts and the foreign exchange. So, overall there are four different 

sequences which are compatible with these constraints. 



(Refer Slide Time: 03:51) 

 

So, this class of graph is an important class and it has two important features, one is of 

course, it is directed. Because, these dependencies are from one task to another task, it is 

not a symmetric dependency and there are no cycles. See, if you had a cycle it would 

been that group of tasks depend on each other, so there is no way to start, because each 

task is depends on something else in the cycle. So, you have to break the cycle 

somewhere in order to get started, but you cannot break it anywhere, because each task 

depends on something else in the cycle. So, this graph will have directions on the edges 

and they cannot be any cycles in this graph. 

(Refer Slide Time: 04:28) 

 

So, we call such a graph a directed acyclic graph, so a directed acyclic graph is just a 



directed graph, in which there is no directed path from any vertex back to itself. So, if I 

started any vertex V, it should not be the case that I can follow a sequence of directed 

edges in the same direction and somehow come back to d. So, this should not be there, so 

it should not be this cycle, we abbreviate the name Directed Acyclic Graph as DAG.. So, 

very often simplicity we will call this graph as DAGs. 

(Refer Slide Time: 05:02) 

 

So, the problem that we had discussed in our example is that we have given a set of tasks 

and we want to write them out in a sequence with respect to the constraints, the 

constraints are nothing but, the edges. So, in general we are given a set of vertices these 

are our tasks abstractly 1 to n and we want to read, write our 1 to n in such a way that the 

constraints are respected. What this means is, that we will write out a sequence of 

numbers which is a permutation of 1 to n. In such a way that whenever there is a 

constraint of the form j k that is represents edge j k, then in the numeration that we have 

perform j must come before k. So, it cannot be that we have to do j before k according to 

our constraint, but in the sequence that we produced k happens before j. So, the order of 

vertices in the final sequence must respect the constraints given by DAG, so for various 

reasons this is known as topologically sorting the DAG. 



(Refer Slide Time: 06:02) 

 

So, the first observation is that if the directed graph had a cycle, then you will not be able 

to topologically order it. Because, if it had a cycle then for instance supposing j and k are 

vertices on the cycle, then you will have a path from j to k and a path from k to j. Now, it 

is easy to see that the topological ordering constraint extend to paths that is if I have j 

before k as an edge, I know that j must appear before k in the final sequence, also it has 

the path from j to k, then there is a sequence of dependencies from j to k. So, j must 

appear before k. 

Now, if I have a cycle it says that j must come before k and k must come before j. So, 

there is no way to break this ((Refer Time: 06:45)), so we will end up with this situation 

where we cannot order this set of task to respect the constraints. So, the graph has cycles, 

then it is clear that there is no topological ordering possible. 



(Refer Slide Time: 06:58) 

  

So, what we claim; however, is that for DAGs there is no cycle, the graph is actually 

acyclic then we can always order it topologically. So, this strategy is to order the vertices 

as follows, you first list all the vertices which have no dependencies. In our earlier 

example, the vertex which has no dependencies was getting passport, we did not need to 

do anything before getting a passport, so we can do that first. 

Now, once we are nop-top that the dependency you see any vertex which all it is 

dependencies that now satisfied and then we can numerate that. So, we can 

systematically list out vertices with no incoming edges, then vertices all whose incoming 

edges are already been accounted for a numeration and so on. 

(Refer Slide Time: 07:45) 

 



So, to formalize this notion we introduce some terminology, so recall that for an 

undirected graph, we use the term degree of v to refer to the number of vertices 

connected to v. So, v was connected by an edge before vertices, then we would said that 

the degree of v is 4. Now, since we have a directed graph we have a directions on the 

edges, we have some edges which are coming in and some edges which are going out. 

So, we separate out the degree in to the indegree and the outdegree. So, the indegree is 

the number of edges pointing into v directed into v, the outdegree of v is a number of 

edges pointing out of v. 

(Refer Slide Time: 08:24) 

 

So, our first claim is that every DAG has at least one vertex with in degree 0, in terms of 

are example a vertex with in degree 0 is something which has no dependencies, nothing 

it does not depend on anything, this nothing pointing into it. Now, how do we proof this 

where supposing we start with any vertex v such that has in degree greater than 0, since 

it has in something pointing into it, then it must have some edge coming into it, so let us 

called at b 2. 

Now, supposing this does not having in degree 0, then it must also have something 

pointing it to. So, then I get a third vertex, so in this way if I keep finding that the 

vertices have encountering have in degree greater than 0, eventually I must enumerate all 

the vertices in my graph. Now, if there is still not a case that the nth vertex there are n 

vertices in the nth vertex still does not increase 0 then it must have an incoming edge, but 

they cannot be from a new vertex. So, it must point from one of the existing vertices 

which have already seen before. 



So, therefore, if I have a continuous sequence or vertices all of which are pointing to 

each the previous one with in degree not equal to 0, then I will end up with a cycle, but 

this is the contradiction, because we have an acyclic graph. So, in any directed acyclic 

graph, they must be at least one vertex with in degree 0 which corresponds to a task with 

more dependencies from where we can start or a numeration of the tasks. 

(Refer Slide Time: 09:58) 

 

So, this is a more elaborate version of the algorithm that it described earlier. So, we pick 

a vertex with in degree 0, we call that such a vertex has no dependencies, now we 

enumerated because it now has it is available for enumeration and then we deleted from 

the graph. So, when we delete a vertex with in degree 0 from a graph is suppose when 

we have a DAG like this. So, supposing we pick this one and we deleted, then clearly 

what remains is the DAG. 

Because, it still directed and we have not introduced an cycle, so it is already acyclic and 

by deleting an edge we cannot introduce a cycle. So, clearly it is a DAG, so we can apply 

the same criterion, this new DAG must also have at least one degree with vertex with in 

degree 0. So, we can numerate that and keep going, so we keep enumerating vertices 

with in degree 0 and through the DAG becomes empty, each n vertex to enumerate we 

will delete from the DAG. 



(Refer Slide Time: 11:00) 

 

So, let us apply the strategy to this DAG, so we first begin by labelling every vertex by it 

is in degree. So, will read we have indicated the in degree of the every vertex. So, for 

instance 1 and 2 have no incoming edges. So, they have in degree 0, vertex 3 as 2 edges 

coming as in degree 2, vertex 8 has 4 edges coming inside and in degree as 4 and so on, 

now we have to pick up a vertex of in degree 0 enumerated and eliminated. 

So, we have a choice between 1 and 2, so let us suppose we start with 1, so we start with 

1 we eliminated and now when we eliminated we also eliminate the edges going out of it. 

So, the edges coming into the 3, 4 and 5 will reduce by 1, because a vertex 1 is gone, so 

the edges coming into them reduce by 1 there in degree is also reduced by 1. 

(Refer Slide Time: 11:57) 

 



So, what happens on eliminate 1 is that we enumerated and we reduce the in degrees of 

3, 4 and 5 from 2, 1 1 to 1 0 0. 

(Refer Slide Time: 12:04) 

 

So, recall that before that the in decrease or 2 1 and 1, now these edges which are coming 

into them have been deleted. So, when we delete this, we also delete the incoming edges. 

(Refer Slide Time: 12:14) 

 

So, now we have 1 0 0, now we have three choices, two the original one which are in 

degree 0 and we have two new vertices 4 and 5 which correspond to tasks if you want to 

call them, whose prerequisite has been completed. So, tasks 1 was a only pre requested 

for 4, task 1 is only prerequisite ed for 5 it has been completed. So, 4 and 5 or now 



available, so we can choose any of 2, 4 and 5 it does not matter. So, let us suppose we 

choose 4 then again these two edges will go. So, this will reduce to 1 and this will reduce 

to 3. 

(Refer Slide Time: 12:48) 

 

So, we can do that eliminate 4 and reduce the in degree of 6 from 2 to 1 in degree of 8 

from 4 to 3, now perhaps which is decide to eliminate task 2. 

(Refer Slide Time: 13:00) 

 

So, when you do pass 2 then the in degree of 3 reduces and the in degree of 8 again 

reduces. So, notice that 8 still has to pending in requirements only 5 and 7, so it cannot 

be done yet, but 3 and 5 are the available. 



(Refer Slide Time: 13:14) 

 

So, perhaps I do 5, so now 8 plus 1 and now have no choice, the only task with in degree 

0 is 3. So, then I do 3, so now I can see that this is actually a the way it is drawn is that is 

the sequence, I must to 3 before 6, 6 before 7, 7 before 8. So, I no choice to this point I 

must enumerated as 3. 

(Refer Slide Time: 13:32) 

 

Then, 6. 



(Refer Slide Time: 13:33) 

  

Then, 7. 
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Then finally, 8. 



(Refer Slide Time: 13:36) 

  

At this point may graph is empty and I have to obtain a sequence of vertices which is a 

valid topological ordering, because every pair of vertices which occurs an edge in my 

original graph is order. So, that source of the edge appears before the target to the edge. 

(Refer Slide Time: 13:52) 

 

So, let us look at some pseudo code for the algorithm which we just executed by DAG. 

So, in this particular algorithm we first start by computing the in degree, so in order to 

compute the in degree, we need to find out how many for a vertex i we need to find out 

how many j satisfy the property that A j i is equal to 1, because this corresponds to an 

edge from j to i. So, when an adjacency matrix this corresponds to looking at a column 

containing line. 



Because, in the column containing I, you will have entries at the form A 1 i, A 2 i and so 

on. So, we will have these entries and we want to scan all of these and then add up all the 

1s. So, we start by setting in degree equal to 1, a in degree i equal to 0 and then for every 

row j we add A j i. So, it is either 0 or 1 and so we therefore, collect all the incoming 

edges which pointing to i as the in degree of i, now we start enumerating. So, we know 

this is a DAG, so we know there is at least 1 j with in degree 0 at an every point. 

So, we choose any such j, choose a j which has in degree 0 enumerate it, now when we 

enumerate we want to eliminated from the graph. Rather than, going an actually 

modifying the graph itself, we will just work with in degree as a kind of approximate 

version of that modified graph. So, we first set the in degree to minus 1 for this particular 

vertex. So, minus 1 means it cannot be in the graph, because you cannot have minus 1 

edges pointing can have at least 0 edges of mode. 

So, this effectively means that the j is not going to be considered hence 4 and now for 

every outgoing edge from j. So, wherever we have j pointing to k we want to decrement 

this, because we are going to eliminate this edge eliminating j, we eliminate this edge. 

So, for every k from 1 to n we scan out going neighbours of j and if j k is an edge A j k is 

1 we reduce the in degree of k by 1. 

(Refer Slide Time: 15:48) 

 

So, what is the complexity of the algorithm is fairly easy to see that for this adjacency 

matrix or presents it is n square, as we saw initializing the in degree itself takes time n 

square ((Refer Time: 16:01)). Because, we have one outer loop from 1 to n and then for 



each outer loop we have an inner loop from 1 to n, so this is a n squared loop. And then, 

when we enumerate the vertices again we have an outer loop which will enumerate every 

vertex once. 

And then for the inner loop, we have to enumerate check all it is neighbours and 

decrement. So, we have 2 n square loops and therefore, this whole thing takes order n 

square. 

(Refer Slide Time: 16:29) 

 

Now, we can as we saw with BFS and DFS, if we use an adjacency list we can be a little 

more clever and we can bring down this time to linear from n square we can bring it 

down to order n plus m. So, how do we do this? Well, we be have this list, so we have 

list say 1, 2 and for each of these we have a list of it is neighbours. So, if you go through 

this as we said each edge in this, now this is a directed graph. So, each edges represented 

only once if an edge from i to j it will appear as an entry j in the list for i. 

So, if you scan these lists every time we see a j, we know there is an edge pointing in to j 

and we will increment. So, we start of by setting all the in degrees to 0, we scan all the 

lists and every time we see an entry in a list, we increment this in degree. So, one scan of 

the list that is in time order n, we can find the in degrees. Now, we have the list of in 

degrees, so we can put all the in degree vertices into a queue, this makes it easy to find 

which vertex to enumerate next. 

So, at the end of this scan we have done an order m scan to find all the in degrees, now 

and an order n scan we can put all the 0 degree vertices in to a queue. Now, we can do 



the rest pretty much as we did much before, we enumerate the first vertex in the queue 

and then we go to its list which is now explicitly available to a adjacency list is outgoing 

neighbours, decrement its in degree and if any of those in degree is become 0 we can 

added to the queue. 

So, we know it is to be processed now, so this becomes overall it take order m time to 

scan the list takes order n time to start the queue of and then this is the loop of order n 

where across all the updates we will overall update in degrees order n times, so this is 

order n plus m. 

(Refer Slide Time: 18:26) 

 

So, here is the corresponding pseudo code, so the first step is to initialise the in degree to 

0 for every vertex in our graph, then we go through all the edges. So, we do this by 

looking at each adjacency list. For each vertex we look at each neighbour i, j and the 

adjacency list and we for each of these we increment the in degree of j, because we are 

looking at edges pointing into j, not pointing out of i. So, this pointing into j will come in 

different list. 

But, as and when we encounter them for each of them we will account for them and add 

one to it. Now, we go through the list one more time a list of vertices and every time will 

see an in degree 1, 0 we add i to the queue. And now we do this loop, till the queue 

becomes empty we know this at least one at every point remember along the graph a is 

DAG is not an empty, we know there is at least one in degree vertex with in degree i 0. 

So, they must be in the queue, because we adding them all originated the queue and each 



one we generate we will add to the queue. 

So, along with a queue is not empty we take of the first element of the queue, then we 

look at its adjacency list, decrement the in degrees of all those vertices and if any of them 

happens to now become in degree 0, we add to the queue. So, this becomes now a linear 

implementation of topological sort, using adjacency list and a queue to process the 

elements. Because, the  reason why we need this queue is that otherwise we have to scan 

all the vertices every time to determine whether a vertex or become in degree 0, then that 

becomes an order n scan within this become order n square again. 

So, we need the queue to make sure that we do not spend time trying to identify the next 

vertex to enumerate. We do not have to go through all the vertices and check the in 

degrees, when we see the in degree 0 we put it into the queue. So, automatically it will 

come out without having to do any further check. So, it gets observed in this order m 

work that we are doing here. 


