
Design and Analysis of Algorithms

Prof. Madhavan Mukund

Chennai Mathematical Institute

Week - 03

Module - 04

Lecture - 21

Depth first search (DFS)

(Refer Slide Time: 00:09)

So, we have seen how to explore connectivity using breadth first search. So, now let us

look at the other strategy which is commonly use called depth first search. So, an depth

first search instead of exploring all vertices level by level. Each time we explore a new

vertex, we immediately explore it is steps. So, we start now vertex i and visit the first

neighbour j from i which is not yet explore. When we suspend the explanation why and

explore j instead, and you keep doing this until you can no further. So, when you gets

stuck when there is nothing new to explore you walk back, because you have already left

some vertices earlier unexplored, because is suspended. So, you go back to the nearest

suspended vertex such still has an unexplored neighbor, and then you explore the next

unexplored neighbour of that vertex.

So, the wait think about it is that all the vertices which are pending which has suspended

are now in a stack. So, you build up to stack as you go to deeper and deeper into the

graph, and then whenever you get stack at a dead end, walk back up and you process

things earlier in the stack.

(Refer Slide Time: 01:08)

So, as before let us execute this algorithm by hand on our graph, you see how it works

before we write the pseudo code. So, this time we are starting at 4. So, first step is to

mark 4 as visited. So, we star mark 4 as visited and we identify that it has 3 neighbours

before neighbours 1, 3, 5, and 6. So, taking them an order we start with 1; 1 is not

visited. So, we mark it as visited. And we put 4 on the stack, saying a suspending the

execution of 4, because now we are going to explore 1 in step. So, now we go to 1, then

we see that 1 has neighbours 2, 3, and 4 among these of first is 2. So, if could 2 on the

stack, since it could not is 2, remark 2 is visited. So, which you are not visited earlier, in

we put 1 on the stack, since now we are suspending 1.

So, now we look at the neighbours of 2. So, neighbours of 2 are 1 and 3, 1 is already

been visited, 3 has not. So, we will now mark 3 as visited and suspend 2. Now when we

come to 3, it has 2 neighbours 1 and 2, but both of them are already visited. So, thus

nothing to become. So, we must go and we must go back to the last vertex which we

suspended namely 2, and explore it is neighbours. To a go back to 2, so we had already

declared that 1 was not to be done, we have already process 3. So, we have to look at 4,

but 4 is also already visited. So, I have done with 2. So, now we must go back and go the

store the next vertex in the stack which was left number that was 1. Now we go back to

1, and we find that from 1 we had already visited 2, 3 which we are not visited to 1 was

visited via to such already mark to this is done. And 4 also is where we came from to 1.

So, this is done. So, 1 is also useless.

So, now we go back and go back to the first vertex in started with 4, and see the

something more to be done. So, having come back to 4, we find that, it has more

neighbours, beyond the explore 1 the first step. So, now we continue we find that there

are ((Refer Time: 03:18)) 5, 6, and 8. So, we pick up 5 and see is not visited, we mark 5

((Refer Time: 03:27)) again suspend 5. So, from 5, now we have 4, 6, and 7. So, we will

now pick up 6 and suspend 5. From 6, we have 7, 5, 7, and 8; the 5 is already done, but 7

is not done. So, we will pick up 7 and suspend 6. Now from 7, we find that it has

neighbours 5 and 6, both of which are already mark. So, 7 is ((Refer Time: 03:56)). So,

we come back and look at 6 again, and see to anything move to be done, there is where is

an 8. So, now we add 8, and again suspend 8. Now we are at 8, and now we are to ask

what can be explore from 8, from 8 4 is already done – has 4, 6, and 9. So, 4 is already

done, 6 is already done, but 9 is need. So, we add 9 and suspend 8, then we move to 9.

So, from 9 we find it have a new neighbour 10. So, we add 10 then we are done, because

10 has nothing to do. So, we go back and process 9; 9 has no more new things to say,

because 9 we other neighbours are 6 and 8 to be already done, you go back to 8, 8 has

nothing more to says will go back to 6, 6 has nothing more to says will go back to 5, 5

has nothing more to says will go back to 4, now when we started this whole expiration

you get it 4 to 5. So, now we look and see the 4 to 6 is already done, it is enough 2 to 6 4

to 8 is already done. So, this nothing more we can do from 4 and so this expiration is

done.

(Refer Slide Time: 05:00)

So, what we did explicitly with a stack can be done more cleverly, we just implemented

recursive. So, whenever we visit a new vertex j, we call DFS of j an suspend DFS of the

current vertex i. So, we do not have explicitly maintain this stack that we are simulating,

because it will be implicitly maintain by the recursive function calls.

(Refer Slide Time: 05:27)

So, DFS is therefore a very simple algorithm to implement. So, initially we say for every

vertex visited is 0, and remember like in DFS breadth first search we want to keep track

of where we came from, so we will say that everything as an undefined there. Now we

initialize we call DFS of the start vertex. So, when we call DFS from a vertex, we mark it

has been visited. So, the first thing we do this to mark it has been visiting. And now for

every other vertex that it is connected to we do the usual think, we check whether or not

that vertex we already visited; if it is not visited, we want visit it. So, how do we visited

will we mark its parent is being i.

And then we suspend this DFS and call that DFS. So, this is what we are doing explicitly

with a stack, but it much easier to do recursive. So, DFS is a very, very simple recursive

algorithm, starts in I look at every unexplored neighbour and recursively in would DFS

on that unexplored it.

(Refer Slide Time: 06:30)

So, what is the complexity of depth first search? Well, each vertex is marked and

explored exactly once. So, we do DFS of j, once for every j’s. So, these are order n

((Refer Time: 06:42)), actually exactly n calls if everything is reach a row. Now when we

call DFS of j for a particular j, we need to examine all the neighbours of j. As we saw

before if we have adjacency matrix; that means, we have to look at the row j, and we

have to look at every entry in this row. So, this takes order n time. So, we have order n

calls and each call takes order n times. So, over all we have order n square time.

On the other hand, if you use and adjacency list then when we look at the neighbours of

j, we only have to look at the exact vertices connected to and as we said before if we

count across all the calls each edge will be accounted for twice; once from i to j, and

once from j to i. So, the total numbers of calls, the total number of steps to scan the

neighbours we will be order of the number of edges. So, the overall time will be linear m

plus n like breadth first search. So, both depth first search, and breadth first search are

linear in the size of the input, if we use adjacency list.

(Refer Slide Time: 07:45)

So, one big differences between depth first search and breadth first search is that the

paths that breadth first search discovers are not shortest paths. So, if we have a graph as

we saw before a triangle like this will we have 1, 2, and 3; then what depth first search

will do to find a path from 1, 2, 3 which goes via 2, if we take this smallest neighbor it is

time to explore. So, when actually come to the 1 3 part, I will find it 3 is already visit in

((Refer Time: 08.14)) right. So, it appears therefore the depth first search may not

between something very useful, but actually this recursive way of exploring gives us a

lot of information.

So, many useful features about the graph can actually be recorded by can be extracted by

recording the order in which DFS which is vertices. So, for this we argument DFS, we

something called numbering. So, we maintain a counter which we increment every time

we enter a vertex, when DFS starts in a vertex and when it leaps. So, we associate with

each vertex in the graph 2 values; the value of the counter that was there when I entered

when I did DFS of j for the first time, and the value of the counter when DFS of the j

execute.

(Refer Slide Time: 09:00)

So, this is how we would do this in our algorithm. So, we start by initializing this counter

to 0, now whenever I invoke DFS of i, the first thing I do is assign the current counter

value to something call the 3 number of i. So, this is the number of the counter before the

DFS of i actually started, and then i increment the count. Likewise when I am about to

exit, I would mark post of i equal to count, and again i increment the count. So, this is

that of... So, in between remember a lot of recursive call (Refer Time: 09:33)). So, this

point is not going to the same as the count with i incremented is going to be a lot of

((Refer Time: 09:38)) happening in between, and it terms out this the order in which

these 2 numbers pre i and post i, if you across vertices I can actually recover a lot of

information.

(Refer Slide Time: 09:48)

So, let us look at this example that we did before. So, supposing as before we start at 4.

So, we will say that its pre number is say 0, because will start there and then we

increment and then we go to 1. So, when we enter 1, the number is the count is 1. So, its

pre number is 1, and then we go to 2, its pre number is 2; then we go to 3, that is pre

number is 3, and then we immediately if 3, because we do not have any new neighbors to

exit. So, it is post number is now 4. So, I am writing to pre number about and the post

number below. When I come back to 2 and I have find that this nothing more to be done

it twos are exit from twos. So, its post number becomes 5. So, notice that here, I enter at

step 2 and left step 5 in between I did 3 and 4 somewhere else. Likewise I come back to

1, and I ((Refer Time: 10:36)) it has nothing new to say. So, now I leave 1 at step 6, then

I come back to 4, but I am not finish to 4, because I can do 5.

So, I enter 5 at step 7, from 5 I enter 6 at as step 8, from 6 I enter 7 at step 9, now from 7

I cannot to anywhere else, so I leap 7 and I come back to 6, when from 6 I look further

and I have find 8. So, enter 8. So, I was a 10 at that point. So, now I enter 8 step the 11,

from 8 I enter 9 at step 12, from 9 I enter step 10 at step 13, when I leaf 10 and I leave 9

at 15, I leave 8 at 16, I leave 7 17, I leave 5 at 18, and I come back to 4 and I have finally

finish, thank you.

So, I have with each, each node now these 2 values of 3 value, and 4 step. So, I would

pre value and a post value, and it turns out the, this pre and post value can be very

helpful.

(Refer Slide Time: 11:46)

So, we can find out thinks like whether graphs are the cycle. So, this is a cycle. So,

whether a graph has a loop like this or we can find out whether there are go to see is like

this. So, this is the special vertex, because if I remove this 4 from the graph, in the graph

which are earlier connected everything to reach everything no longer connected. So, thus

no way to now to get from 1 2 3 to this ((Refer Time: 12:06)). So, are they such cut

vertices. So, these are various things that can be computed using these DFS numbers, we

will see some of these from computations in later lectures, but this makes DFS actually a

much more useful exploration strategy on breadth first search the BFS does give us

shortest paths, but on the other hand DFS gives as a wealth of information which is

implicitly hidden in this recursive ((Refer Time: 12:31)) exploration which will can

explode to find out various structural properties of the graph for free more or less while

we are doing DFS, we can find out many, many interesting things about it all.

