
Design and Analysis of Algorithms

Prof. Madhavan Mukund

Chennai Mathematical Institute

Week - 02

Module - 04

Lecture – 12

Insertion Sort

So, let us continue with a discussion of sorting, and look at another simple sorting

algorithm.

(Refer Slide Time: 00:06)

So, as we said before that are many more motivation for sorting; starting from searching,

to removing duplicates, to computing some statistical properties, such as frequency

tables, and so on.

(Refer Slide Time: 00:18)

And the example that we have in hand, is one way we are ask to sort a bunch of exam

papers in descending order of marks.

(Refer Slide Time: 00:28)

So, second strategy to sort this bunch of a exam papers would be the following. So, you

take the top most paper in this stack that you have, and create a new stack that. Now you

take the second paper and compare it to the first paper. If the mark is bigger, you put it

about, because you wanted it in descending order. If the mark is smaller, you put it

below. So, after this step, you have two stacks of papers in descending order. Now the

stack of two papers rather. And now you take the third paper, and now you see where it

fits with respect to the first two; either it goes all the way to the bottom or it goes

between the two or the all the way go on . In this way at each point you pick up the top

most paper in the unsorted stack, and you inserted it into is correct position, in the sorted

stack that you have building up.

(Refer Slide Time: 01:18)

So, let see how should work. So, supposing we have a rolled array of the unsorted

elements. So, what we do is, we start with the very first element namely 74. So, we take

74, and we start a new stack. Now we have to take. Now the top most elements at this

point is now 32, to the left most in this case. So, now we have to take 32, and since it is

smaller it should go to the left of 74. So, we do this, so we now get this array. Now we

look at the next element; namely 89. And once again it must go with the appropriate

position with respect these two, so it must go to the right of the 74, so we get this array.

Now we take 55, and we have to find out where it goes. So we can start at end and say it

is not here, it must go to the left of this.

Then we finally, find that this is a correct place for it to go. So, this is the insertion step.

We take each element, and we walk down to the point where we want to insert. So, 55

comes between 32 and 74. Now where it is 21 go. Well if we try it insert it, it turns out, it

must go all the way to beginning, because it is smaller then everything that we have so

far. So, this is the next step. And finally, when we do 64, it will come between 55 and 74.

So, at each step we pick up next element, and we insert it into the already sorted

segments that we have created with all the previous elements.

(Refer Slide Time: 02:42)

So, we start by building a sorted sequence with one element. So, this is called insertion

sort. And we insert each unsorted element into the correct place in the already unsorted

sequence. So, it is because of the insertion step, that every element is inserted into its

correct place. This is called insertion sort.

(Refer Slide Time: 03:05)

So, this is a very straight forward iterative implementation again. So, what will do is, we

have an initial array a, and position 0 to n minus 1. So, what will do; of course, is at the

beginning we have to nothing. So, we cannot assume that we actually start with position

1. So, we start with position 1, and then we look backwards. So, we start with a current

position, and we work backwards, and so long as value that we are looking at, is smaller

than the value to its left. We keep moving. So, we have assumed that we have this swap

operation, which basically takes two positions, an array and exchanges them. So, swap a

nextpos nextpos minus 1, means take the value a nextpos, take the value of a nextpos

minus 1, and swap them. As we expand at the beginning, we can assume that such things

are basic operation is convenient for us to express algorithm like it, as adding this only

adds a constant factor to the number of overall operation that we have to do, which we

can ignore an ((Refer Time: 04:06)) complexity.

So, we swap each element with element on a left, so long as it is, the element on a left

smaller, and we stop when we come to a position where the value on the left, is greater

than are equal to the current value, at this point we stop. So, this brings the value that we

started with, is in correct position. So, in general, if we had; say done up to sum i and

then I start walk in backward. Then so long as i is smaller than i minus 1, I will

exchange. I will keep exchanging, until I reach a position, where a find that the values on

the left, are smaller than this value, and I will stop. So, this is a basic loop, and I do this

for all elements. So, for each element I have to insert it. So, first time I have to insert it in

the smaller segment. As I go along, the segments we have to insert it in, become longer

and longer.

(Refer Slide Time: 04:54)

So, we can see now how this works, on an array given to us. So, we first of all start with,

looking at this segment. So, this is my initial configuration. So, this is sorted, and this is

unsorted. So, now, I will immediately see the 32, is bigger than 74, so I will exchange,

and then because it reaches the beginning. So, one of the condition in that loop, is that if

I reach beginning of the loop, so nextpos is equal to 0, I will also stop, if I found it to the

left most position then the loops terminates . So, having done that, then I have this. So,

now I must try to insert 89 into this. So, I will find that 89 is already bigger than 74,

nothing is to be done. So, the first nontrivial step that happens, is with 55. So, when I do

55, I compare it to the 89. I find that 89 is bigger than 55, I will exchange them. Now I

will compare 55 with element once left 74.

And then again it is the wrong way, so I will exchange. Finally, having found that 55 is

now bigger than 32, I will stop. So, this is now the end of the space. Now I will look at

the next element to do, which is 21. So, I will look at 21. So, 21 will get exchanged with

89. Then 21 will exchange, so it will get exchanged all the way to the left, so I will

exchange 21 which 74. Then I will exchange 21 with 55. Then I will exchange 21 and

32. And now once again I will stop, because every (()) left most position, there is

nothing to the left. And the last round I will take 64. So, now, this part is all sorted. So, I

will take 64 and try to insert it here, so it will swap with 89. It will swap with 74, and

then stop. This is how insertion sort works. This is a very intuitive sort. If you take a

pack of card and try to sort it, typically this is how you would sort.

(Refer Slide Time: 06:59)

So, if you look at the analysis, it is quite similar to selection sort that we sort before. So,

inserting a value means we have to walk down to that segment till the very end. Now of

course, one made argue, that to find the position to insert, you can use binary search. We

need not go one element at a time. If you want to actually find the position where it must

go, we can use binary search, but even if you find the position where it must go in

logarithmic time. You need to shift all the elements, and that is what really takes linear

time. You need to actually make space for this. So in the worst case, you might have to

put it in the left most position.

So, all the k elements which are already there must be shifted right by 1, and that takes

case steps. So, binary search, although it can help as find the position faster, does not

really help us to implement insert any faster. So, insert takes linear time for a segment,

and this segment keep growing. Initially I want to insert a 1 into segment of size 1, then a

2 into segment of size 2 and so on. So, I have 1 plus 2 plus 3 up to n minus 1; finally, a n

minus 1 must be inserted in this segment a 0 2 a n minus 2, which is a length n minus 1.

So, again I have t of n is 1 plus 2 up to n minus 1, and this is just variation of this

summation we have seen many times before, is n into n minus 1 by 2. So, this is again an

order n square search.

(Refer Slide Time: 08:16)

So, once again as we saw for selection sort. There is a natural way to think of insertion

sort as a recursive thing. We sort part of the array, and then we insert an element into that

to grow it. So, in this case we think of the array as being into components. So, we have a

sorted portion, and an unsorted portion. So, what we do is, we take the first element here

and insert it and then we recursively apply the algorithm to the rest of the unsorted

portion. So, if a 0 to i minus 1. So, this is position i and this is position i minus 1. So, i

minus 1 is the last sorted position, i is the first unsorted position. Then we insert a i into

the sorted portion. And then we recursively sorted a i plus 1 onwards. And once again

when i is the actually here, at n minus 1, then we do not have to do anything, so we can

just trivially return.

(Refer Slide Time: 09:17)

So, now we have recursive formulation in two parts. So, we have insertion sort itself,

which says sort the unsorted segment from start to n minus 1. So, if start is already in at n

minus 1 return; otherwise insert the value at position start into the rest of a, which you

will see if below. And then recursively sort the rest of the array from sort plus 1 onwards.

So, what is the insert do? Well it starts if the position start and tries to insert it into the

segment 0 to start minus 1. So, it works backwards exactly as we have done it in iterative

thing. It finds the first position such that the value on the left, is at least as smalls as the

value currently looking for and stops there. So, this insert is basically what is the body of

the iterate loop, but insert doing an outer loop, we do it recursively. So, how much time

does this take.

(Refer Slide Time: 10:10)

Once again this is just give you practice in looking at recursively algorithms and writing

down the analysis. So, whenever we have a recursively algorithm we write a recurrence;

that is, we write of formulation of t of n in terms of smaller values of t. So, let us try to

analyze this recursively algorithm. So, we will analyze it, looking at a slightly differently

from the way we have formulated the algorithm. So, if you want to sort a 0 to a n minus

1, then what we are doing is, we are recursively sorting this segment, and then inserting

this value. So, it takes time t n to sort the entire thing. This breaks of it taking time t n

minus 1 to sort the first part up to n minus 2, and then n minus 1 step to the insert right.

So, we get same recurrence as we did for selection sort t of n is t of n this is the insert

space, and plus t of n minus 1 which is the recursive phase.

And if we expand this out exactly as we did before, we get n minus 1 plus n minus 2

down to n, which is n into n minus 1 by 2, which is order n square. So, again there is no

different between time for the recursive and iterative version; except the one should keep

in mind in general that, recursive calls are more expansive then iterative loops. We will

come back to this point a little later, but otherwise if we count recursive calls calling a

function is a basic operation, then there is no difference between the recursive and the

iterative version. The recursive version is sometimes easier to conceptually understand

and to code.

(Refer Slide Time: 11:46)

So, what we have seen is that, the two natural algorithms that we would typically applied

when we do something manually; selection sort and insertion sort are both order n

square. There is another algorithm which you may come across which we will not

discuss in this course called bubble sort, which not something that we would do

naturally, but it is seems to be a favorite way of describing how to do the things on a

computer. So, bubble sort basically does this insertion kind of swapping, except it takes

the maximum or minimum value depending on which you want to do. Say it takes the

maximum value and moves it to one end of the array. So, then you have like selection

sort, the largest value at one end. Then you go back to the beginning, and again you keep

looking at adjusting values, and take the second largest value to the second largest

position and so on. So, bubble sort is also N Square, but as we have seen n square

algorithms are not really feasible for large values of n. So, if we have n above about

10000, somewhere between 10 to the 4 in 10 to the 5, then n square is going to take

several hundred seconds to execute, and therefore, this is not going to be useful for large

bodies of data.

But this is not to say that these algorithms are all equally bad. In particular it turns out

that if actually look at experimental evidence, then n insertion sort usually behaves better

than selection sort, and both of them are better than bubble sort. And to think about why

insertion sort behaves well, just imagine what happens when we applied insertion sort to

an already sorted list. Whenever we want to insert something into the already sorted list,

we will find that is already in that correct position. So, the bottle neck, which is the insert

phase, is the bottle neck. The insert face will basically terminate after one comparison.

So, insertion sort will essentially become linear time, if you applied to on already sorted

it. So, this is while many situation; insertion sort actually behaves a little better than

other order n square sorts, but in general order n square sorting algorithms are not

acceptable, and we would like to loop at remote clever ways of sorting a data, because in

order to sort large volumes of data this is impractical.

