
Programming and Data Structures

Prof. N. S. Narayanaswamy

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture - 18

Heaps

In today’s lecture, let us look at the second of the advanced data structures, non linear

data structures that we studying this week which is the heap data structure. As you will

see again like the binary search tree data structure, once you have a binary tree

implementation, a heap data structure is actually fairly simple to implement. In

particular, you will see that the heap data structure can be very easily implemented in an

array and I encourage all of you to implement the heap data structure and all the methods

that you see here. As usual as this is the theme for this week, the code will be within the

presentation itself, I am not going to show you any C code or any execution or any

compilation. So, I encourage you to implement the heap data structure, it is very easy to

implement and it is a very powerful data structure.

(Refer Slide Time: 00:58)

So, let us look at the heap abstract data type and it is implementation in today's lecture,

as we will also recall quite of you things that we have seen, you recall that queue is a

first in first out data structure or a data type, and it is very useful write a many contexts.

For example, if you want to implement the traffic on a street with a single lane, then the

queue is the best way, where at the signal only the vehicle at the front can exit.

And on the other hand, if you have two lanes, then you might want to have a special kind

of a data structure which behaves like a queue, but has priorities. For example, an

ambulance on a road with two lanes has high priorities and if all the vehicles are using

one lane and the second one is an ambulance lane, the ambulance lane can go ahead

whenever required.

(Refer Slide Time: 01:52)

So, that is we are going to talk about queues that allow you to jump the lines or go ahead.

So, the basic operations in a queue of this form is that we will insert an element and the

goal is always to remove the best or the most important or the element with the highest

priority. So, here is a set of keys you want to insert the set of keys and at every step you

want to quickly delete the one with the least key, delete men and delete men will model

removing the best element or the one with the highest priority.

 (Refer Slide Time: 02:36)

This is the priority queue abstract data type, we maintain data with a special value called

the priority value, the priority queue data type has two operations. So, the data remember

is data in which every element has a certain value, an integer value called the priority.

We also implement the priority queue operation which are inserted into the priority

queue and always delete the element with the minimum priority. Observe that the priority

queue is a special kind of a queue in…

Observe that the priority queue is more general than a queue because in the queue, the

priority is whoever came first has the higher priority. If therefore, the queue that we were

studied is a special kind of a priority queue, where the priorities depend upon the order in

which the data items arrive to enter into the queue. The most important property of the

priority queue is that if two elements have… There are two elements x and y and x has a

lower priority value than y, then x will be deleted before y. Now, observe that in English

this can be a bit confusion that is why lower and priority value have been put in red and

green. So, we are doing the delete min, therefore, we will always delete an element with

a low priority value.

(Refer Slide Time: 04:07)

Now, the applications of the priority queue are many, if you wanted to print the elements

of an order of decreasing length or if you wanted to identify the most frequent symbols

for comparison or if you want to send packets based on their importance or if you wanted

to sort the element, where picking the smallest value first, this is called a heap short

algorithm. And it is repeatedly used in many greedy algorithms like if you look at the

minimum spanning tree algorithms. Though you have not studied in this course, we

study those algorithms the next value of the next smallest value is always extracted from

a priority queue kind of a data structure.

(Refer Slide Time: 04:47)

So, we are going to talk about ADT’s, so we are going to define the priority, so we have

already defined the priority queue ADT, and then we will show an implementation of

insert and deleteMin.

(Refer Slide Time: 05:00)

So, let us look at the heap properties, first of all it is a binary heap and there is a structure

property that is the underline tree, like it was there in the binary search trees and then

there is an ordering property. Ordering property in a heap is different from the ordering

property in a binary search tree, this is one very important thing to be kept in mind.

(Refer Slide Time: 05:24)

Let us quickly review the parameter associated with the trees, this is a tree as we saw in

the earlier lectures, this node is the root of the tree, these are all the descendants of the

particular node, this node is a left child of this node and this node is a right child, we are

talking of binary trees. But, when you look here, all these nodes are of children of this

particular node, so the notion of left child and right child would not exist and all the child

nodes with share a common parent are called siblings.

And then there is a ancestor relationship between nodes, for example, C the node

containing C is an ancestors of the node containing L and for L the ancestors are all these

nodes right up to the root. Now, you can also see that the sub tree at this particular node

is this whole tree for which this element is a root. Now, here is a numeric parameter

associated with a tree those are all structural parameters. The relationship between them,

the name relationships you can say something is a parent. For example, this node is a

child of this node, this node containing B is the, parent of this node containing F. So,

these are all structural relationships.

(Refer Slide Time: 06:39)

Here are some numerical values associate with a tree, you can define the height of a

particular node, you can define the height of G, which is from the leaf level the height is

2, the depth of this node is from the root the depth is 2, the degree of B, you can that B

has 3 children, so the degree of B can be defined to be 3, the branching factor is the

number of branches that the node has. So, the node with the largest number of children is

defined to be the branching factor of the tree.

(Refer Slide Time: 07:14)

So, before we looked at heap exactly as we did when we studied binary search trees, let

us look at some structural special kinds of trees. Here is a perfect binary tree, in other

words it is a full binary tree, all the nodes are there at height h there are 2 power h leaves

0, 1, 2 and 3. As you can see there are 8 leaves and there are 7 internal nodes or 7 non

leaves, the total number of nodes is 16 minus 1. So, the height of tree is 3, the root is at

level 0, these nodes are at 1, these nodes are at 2 and these nodes are at 3.

(Refer Slide Time: 08:00)

We saw the complete binary tree concept, when we looked at the binary search tree. We

saw the best structure for binary search tree to maintain is a complete binary tree that

controls the fine time of the binary search tree. These are two examples of complete

binary search trees. The tree is completely filled except that the bottom most level where

it is filled from the left to the right.

(Refer Slide Time: 08:29)

A complete binary tree can be very easily implemented and this is the central concept in

the implementation of a heap. So, the structural data of a heap is the following. If you

think of a complete binary tree, so whenever you think heap, you think a complete binary

tree and whenever you think a complete binary tree, you think of the following

implementations. You think of an array, the array in programming language is like C

allows you to be index at 0.

Whereas, when you implement a heap, when you implement a complete binary tree, you

always start off with a data items to be stored at the array index 1 and the rule is very

simple. The left child of a node is always at two times the parent and the right child is

two times the parent plus 1. For example, A is the root, the left child is at location 2,

index 2 and it is B, the right child is 3 and the right child is the value C and it is at index

3 in the array, these are the left child and right child.

Let us look at B, twice the index is 4 which is the left child of B and twice the index plus

1, which is 5 is the right child of B containing the value E. So, let us see this E is a 5 and

D is at 4. Let us look at 3, it is 6 and 7 and let us look at the left and right child of this

particular node, it is at 10 and 11. So, E is here, that is node at element 5 and the node of

element 10 and 11 J and K are the left and right child of this particular node. This is a

very, very important concept. As you can see, this is very easy to implement, there is no

implementation to be done at all.

Once, you define an array and if you put the values in to the array, you are essentially

created a complete binary tree. This is something, but you should keep that in mind.

Now, you should ask, what is a difference between a complete binary tree and a heap?

The answer is organization of the data. So, recall that there is a structure property and

there is an order property. Once you enforce the correct order property on a complete

binary tree, one gets a heap.

(Refer Slide Time: 10:51)

So, here is a heap order property. So, what do you need know is a structure property of

heap is complete binary tree, what is a heap order property, for every non root node X,

the value in the parent of X is less than or equal to the value n X. So, this is the heap

order property, let us look at this is a heap. So, let us look at this, the parent of this node

is less than or equal to the value at this particular node.

Let us take any node; the value at this node is more than the value at it is parent.

Therefore, this is a heap; first of all, it is the complete binary tree and it also has a heap

order property. This is also complete binary tree, but not a heap, why is it not a heap,

because if you look at 15, it is parent has a value which is more than in it. Therefore, this

is not a heap; it does not a respect the heap order property.

(Refer Slide Time: 11:54)

So, we have quickly moved. So, basically since we understand non-linear data structure

and binary tree is very well, we have quickly move into this sophisticated data structure.

So, there are two kinds of heap operations, one is an insert the value, the other one is a

delete men. So, therefore, whenever you want to create a heap, you repeatedly insert

values into the heap and we will see how to do it and whenever a query to delete men is

made heap is modified and the minimum element is deleted from the heap.

(Refer Slide Time: 12:32)

So, let us see how to implement these heap operations, let as look at inserting a heap. So,

now, let me ask this question, so that you can answer this, when you see heap what you

think off, the answer is, you think of array. Now, plus the heap order property, so the

array index at 1 up to the largest index are contains a value the heap, gives you complete

binary tree.

Along with the order property, this complete binary tree is visualize by the person as a

heap, in a program the heap is implemented always inside an array, you can choose

implemented using some other methods, but it is very easily implementable as an array.

Now, let say I want to implement is insert function and the argument to the insert

function is a value. So, what is a basic idea, the basic idea is take the value there and put

it at the next leaf position, what do mean by putting it to the next leaf position, simply

inserted into the array at the last index or the first non empty index, whose value is more

than 0. Now, you move this value repeatedly by exchanging the node until no longer

needed, we will just see this.

(Refer Slide Time: 13:52)

So, let as assume this is the heap. So, this is an array, what are the order of the keys in the

array 10, 20, 80, 40, 60, 85, 99, 50, 700, 65 is the heap, it is a complete binary tree. You

can verify for every value, it is parent value smaller; therefore, we call it a heap. Now,

you look at the value that I want to insert, I insert 15, compare it with a parent and the

exchange when necessary, after that compare it again with a parent, then exchange when

necessary and this guaranties that the heap property is indeed satisfy.

So, this require a bit of analysis and a cleanup step, for example, let me ask, so if I insert

it 45 here, so let me just take a go back again, if want to insert 15, you exchange 15 with

60 and then exchange 15 with 20 again and 1 get's the heap property. So, this is the

operation call percolation. So, it could also do this exercise of insert 45 and let as see

how for 45 would go. So, 45 would get exchange with 60 and would stay there because it

has found a parent which is definitely smaller than at and therefore, the heap property is

always maintain by the percolation or the percolate of approach.

(Refer Slide Time: 15:35)

The idea of the delete men is very simple to remove the element, which is the smallest

one has the remove the value at the root. Now, how does when remove the root, what we

do is, we take the root value, exchange it or rather take the last value from the array and

placed into the root. And now what we do is, we find the smallest child of the node and

perform the exchange, utilities it is no further necessary, this is the percolate down.

So, let as is understand this, you want to perform the delete men, let as look at the basic

idea, first of all you remove the root value, take the last value, the last leaf node, that is

the last location of array, take the value an copied into the root. Now, you ensure that the

heap property is maintain by taking the root value, exchanging it with is smallest child of

the root node and exchange it if necessary. If nodes change as necessary then you are

done, if a change as necessary effect the change and keep repeating the steps, until no

exchanges or further necessary and then we can stop, this is the delete men approach, this

is the percolate down.

(Refer Slide Time: 16:52)

So, let us just see this, so I want a delete 10, so the operation that is perform is take 65,

copied into the location word 10 was present. Now, observe that 65 is now exchange to

with the smallest of the two children, which is 15 and 65, so 15 comes here and 65

comes here and the heap property is no respected queues’ stock. Observe, there it is very

important to move of the smallest to the root, when you perform the exchange, that is

you take 65, put into the root location, that is a first location.

Then, you look at the elements at look at location 2 and 3, take the smallest of 2, it is 15,

we do not exchange a with 20, we exchange to this mallets of the two children and

exchange 15 with 65, that is what mix you get this particular heap and this is a percolate

down procedure. Therefore, insertion in a heap is how percolate up procedure and insert

deletion of the smallest element from the heap that is deleting the root node is a percolate

down procedure conceptual. As you can see while the pictures drown here are

completely binary trees, the implementation is an array and this can be done very, very

efficiently.

(Refer Slide Time: 18:16)

Let us see how to do the build heap, here we are not worry about efficiency, we only will

worry about the correctness. So, take the elements that need to be insert into be heap and

arbitrary put it into the array. So, 12, 5, 11, 3, 10, 6, 9, 4, 8, 1, 7, 2 and this immediately

one visualize the complete binary tree. Now, what we do we take this complete binary

tree and insert do a sequence of inserts, so there it becomes a heap.

(Refer Slide Time: 18:56)

Let us a start off with the simplest of insert that we will do. So, iteratively we short of

with this particular complete binary tree, which is represented by the program in memory

is an array and let us see if it is heap. Now, let us look at this node 2, which is parent is

more then it, therefore, it is not a heap. So, therefore, I will exchange 6 and 2, now then 2

come here and notice that, which parent is larger. So, then it terms out that it is not a

heap, so exchange it with a 2, then 2 comes here and then 2 comes all the way up to 12.

So, we may repeatedly have to do this till it becomes a heap. So, conceptually it is clear

that by repeated exchange as with the parent, whenever a heap violation, heap structure

violation is identify, you can finally make the complete binary tree into the heap. Let us

just do this, we start here, now let as is observe that what I have done, I just shown in the

you can do this on an a arbitrary element. So, let as look at the key 1, now 1 compare

with is parent 10 is smaller, so I exchange now 1 compare with as parent 5 is smaller

now this get’s exchanged.

(Refer Slide Time: 20:36)

Now 5 is compared with 12, so this exchange brings 1 appear and now 5 is compare do

this. So, eventually if you repeatedly do this, one can see that, one will get a heap, I have

not completed this, but you can calculated the run time of this particular approach. So,

the idea is sue repeatedly look at every node, compare it with is parent and effect in

exchange, whenever necessary. Because, lesser then is a strict relationship between two

keys, this procedure will finally terminate very clearly and it will leave you with a heap

in the array, it will be a complete binary tree fine.

So, what have we done we have essentially, so how to work with a heap, we shown how

to delete min from a heap and maintain the heap structure, we shown how to insert into a

heap and maintain the heap structure, we seen how to create a heap, these are the three

most important methods all these are implemented in an array and there very easy to

implement.

(Refer Slide Time: 21:42)

Let as look at other priority queue operation, especially in operating system increasing

the priority value or decreasing the priority value is a basic operation done by any model

operation system. We need to implement is we are not going to do this, but I am just

pointing of that these are the other operation at you may want to perform on the heap.

(Refer Slide Time: 22:02)

You might want to remove an element from the heap itself, for example, if you are

maintaining a heap of process is that have to be schedule on a processor once the process

has been executed on the process, it has be removed from the heap.

(Refer Slide Time: 22:16)

Here at the nice implementation details about a heap, observe that all these

implementation can be done an array. So, finding a child or parent is a multiplication

division by 2 and it can be done very fast. Now, the other negative think is that, it is not

possible to understand as structure of traverse is remember that, if you searching for key

a binary search tree, the pointer traversal very clear.

Therefore, if you are doing a program analysis of the behavior of a binary search tree

implementation, then there is a very clear understanding of how the pointer and traverse

by the search based on a key. In a heap, this is not very clear at all, then every percolate

step always looks only a two nodes and this is a very useful think, but it may also be very

bad for implementation on fast memory is like causes.

Now, insert are also at is as common as delete men, therefore, when you implement a

keep the memory access while performing the keep operations are not very clearly

visible from the implementation in depends very much on the data that you are dealing

with, however, address arithmetic is very fast. So, this brings to an end are lecture on the

heap data structures which has very nice property’s as we saw we could implement

priority queues, priority queues a very important data structure in operating system,

specifically for process scheduling and so on.

And we have seen implementation now, of course, I am not shown your C program that

you can see; however and shown you almost all the code that has been done in binary

such show to a C code, whereas when I showed you the keep implementation I showed

you the Pseudo code, it there is the motivation for doing this. If you understand the

Pseudo code by looking at a binary tree implementation, you should be able to

implement your heap quickly by implementing the heap structure carefully. So, that more

or less brings to in the sequence of lecture, it a programming a data structures codes and

you must an already seen the programming assignment for implementing complete

binary trees.

Thank you very much for your attention, and congrats on completing the sequence of

lecture.

