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Hello, welcome to this last state of lecture in the programming data structures course, 

and in this last lecture we will looked at two advance data structures that are extremely 

useful. These two data structures are based upon the non leaner data structures that we 

studied in weak number 6 of this course and both these data structures that we have 

going to talk about have extensive applications, we are going to look at binary search 

trees and heaps. 

So, in the first lecture this week we are going to look at binary search trees and in the 

subsequent lecture we are going to look at the heap data structures, which is used to 

maintain priority queues and so on and so forth. So, the difference between this set of 

lectures and the earlier lectures is that the programs that I have typically been showing 

you are going to be a part of the presentation itself, and I am not going to show you any 

executable C code or I am not going to show you any execution and compilation steps. 

So, I am just assuming that, because we have looked at how binary trees are 

implemented in general, trees are implemented; once the abstract data type for the binary 

search trees and abstract data type for heaps are clear the implementation is just adding 

additional features to your already existing implementation on trees. So, let us just go to 

the presentation and explore the world of binary search trees and essentially we will look 

at the different methods that are associated with binary search trees. 
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So, we going to talk about binary search trees and let us just recall what binary trees 

are... A binary tree is essentially a triple, it is recursively defined, it has a root and it has 

a left sub tree and a right sub tree. In this example for example, A is a root of this binary 

tree and this tree is the left sub tree and the tree for which C is the root is the right sub 

tree. It is quite possible that the left sub tree or right sub tree or both may be empty, 

observe that C has only one child and depending on the implementation, if this is 

implemented as a right sub tree, then it is left sub tree is empty. 

If you look at a leaf node like D, observe that it has neither left sub tree nor a right sub 

tree. The properties of binary trees are one is interested in binary trees with a maximum 

number of leaves, one is interested in binary trees with a maximum number of nodes, we 

are interested in the average depth for N nodes. So, for the example if the binary tree has 

N nodes, in this case whatever is the number of nodes here you can see with the average 

depth seems to be something between 3 and 4. 

The typical representation of a node in the binary tree which is what you put in your 

node header file is there is a data item and then there is a pointer, the pointer is going to 

point to this object itself, the left pointer and the right pointer to your object of this same 

type. 
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So, in other word this is what a binary tree representation is going to look like, here is a 

node we have seen the code for such things before, A is the key here, the left child points 

to the node that contains the value B, the right child points to the nodes that contains the 

value C and so on, and here is a notation for a null pointer, where the left child is not 

pointing to anything. So, this is the representation of the binary tree that we have already 

seen. 

(Refer Slide Time: 03:58) 

 



Now, let us look at an abstract data type that we have not seen so far which is called the 

dictionary abstract data type. The dictionary abstract data type is a very important 

abstract data type, it is extensively used and it is extensively used almost anywhere, 

where you want to maintain a table or a set of words and you want to repeatedly query 

this table, the table is the abstraction. The data structure, the abstract data type is the 

dictionary data type which means that the keys have an order. 

For example, we all know that Arun is lexicographically smaller than Ashwin. In other 

words, if you maintain a dictionary Arun would precede Ashwini and Ashwini would 

precede Bhavani and so on. And this is exactly the dictionary order in which we view 

words. Now, the typical dictionary operations in the abstract data type are that you want 

to create a dictionary, you want to destroy a dictionary and you want to insert a key into 

the dictionary, you want to find the key if it is presented in a dictionary and you to want 

delete a key from the dictionary. 

These are captured by this pictorial representation, so if you wanted to insert the key 

Ramesh with the attributes which in this case terms out to be may be the room number of 

Ramesh in a certain hostel. In this case, Arun has a certain attribute that he is a hacker, 

Ashwin is a C plus plus guru and so on and so forth. So, you would insert the keys Arun, 

Ashwin and Bhavani and then you would insert Ramesh in to it and this is an additional 

attribute with Ramesh. 

Now, when you find Arun, when the query find Arun is made to this dictionary, the 

response is the key that has been found with any other attribute that is been that is 

present. In this case, because Arun has an attribute hacker, the response of the find Arun 

function is to return the key Arun along with some values that are associated with the 

particular key. So, the values could be any homogeneous type, so which means that you 

should be able to, they should all be of the same type. 

For example, 33 Mandak is a string, C plus plus guru is a string, hacker is a string, so the 

value associated with a different keys are all of the same type. Similarly, keys are also of 

a homogenous type, the additional attribute is that the keys must be comparable, meaning 

that in this case the lexicographic ordering is important. Therefore, when you think of a 

dictionary abstract data type, you think of keys, the keys must come from a single type, 

additional property of the type is that any two keys must have a clear comparison of 



which is bigger and which is smaller. So, these are the methods associated with the 

dictionary data type and observe here that we have really not looking at, at the moment 

how to implement it. We just saying these are the wish list functions the list of functions 

that we wish to implement with it is dictionary data type. 
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Like I said earlier, the dictionary abstract data type is used extensively anywhere you 

want to find things fast based on a key, symbol tables. So, if you are writing a compiler, 

then you might have studied symbol tables and you will definitely use symbol tables. 

Router tables are like dictionaries where the table maintains network addresses 

dictionaries exactly word dictionaries that we are all familiar with and so on and so forth. 
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Now, the rest of the lecture we are going to look at how to implement this dictionary 

search abstract data type, we are going to look at how to store keys, so that we can 

extract them quickly. Observe that here I have removed all the attributes, I will just put 

in exactly the keys that I want to store, the attributes can be stored in some other method 

and by using some other approach. Here we are going to focus only on how to store these 

keys, so that we can extract them fast. 

(Refer Slide Time: 08:17) 

 



So, therefore we want a fast insertion, we want a fast query time, fast search time and a 

fast deletion time, these are our requirements. So, those we have the methods and we 

want these operations to be done as quickly as possible in an implementation of the 

dictionary abstract data type. 
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So, here is the binary tree data type or a modification of the binary tree data type that we 

will used to implement our abstract data type called the dictionary which we saw for a 

few minutes just now. So, let us move away from the dictionary data structure and just 

focus on the binary search tree. So, what is a binary search tree? A binary search tree is 

first of all is a data structures. Secondly, it has two properties, it has a binary tree 

property and it has the search tree property. 

I like to recall again your attention that we are going to use the binary search tree to 

implement our dictionary abstract data types. So, therefore from now on whatever we 

discuss is going to only be a discussion on the binary search tree, we are going to define 

what a binary search tree is, we are going to understand this binary search tree in a very 

clear way. The binary search tree whenever you think of a binary search tree, you think 

of two properties associated with a binary search tree. 

One is called the binary tree property which is a structural property and the second one is 

a search tree property. Let us just go through the binary tree property, the tree structure is 

the binary tree as we saw in the earlier part of this lecture. Every node has at most two 



children, it has the binary search tree, it has a definite root and every node has upper 

bounded by at most two children. For example, 5 has both it is left child and right child, 

2 on the other hand has only it is right child and the node containing 10 has only it is left 

child and 7 is a leaf node it has neither child. 

The advantages of our implementation is that we will use storage in a very efficient way, 

the implementation operations will all be simple, there would be an extensions of the 

binary tree operations that we have already seen. And however, our wish list is that if 

you take the average depth of a node what do I mean the average depth of the node, for 

example if you take the depth of every node, add it up throughout, add it up that is take 

the depth of all the nodes, take the sum and then average it over all the nodes, this must 

be as small as possible, this is a wish list. 

So, we will really not discuss how to ensure that the average depth is small, but we will 

definitely point you at the end of this lecture to different methods which are there in the 

literature that you can definitely explore and implement it. The additional property is the 

search tree property, the search property has the following features that if you look at any 

node, here if I look at this root node, the key here is 8 and all the keys that are in the 

nodes which are to the left sub tree of at this particular node are of value smaller than 8 

and all the values which are in the nodes which are to the right are greater than the value 

here. 

So, this is the property and this property holds that every nodes. For example, if you look 

at 6 all the nodes which are to the left of 6 of course, that is an empty set or smaller than 

6, it is an empty set. So, it is find the statement is true. All the nodes which are to the 

right of this particular node that is here 7 is more than 6, same as towards 5, all the nodes 

to the left of 5, there is 2 and 4 are smaller than 5 and all the nodes to the right of 5 are 

larger than 5, that is 6 and 7. This property is respected at every node this is exactly a 

binary search tree. 

Therefore, whenever you think of a binary search tree, you have to think clearly of these 

two properties, the structure of the binary tree that is a structure property and the order 

among the keys that is a second property. 
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Let us do some quick examples, so let us do a couple of quick examples. So, this as you 

can see is a binary search tree and the way to do this is that you have to look at the tree 

structure. Yes, it is a binary tree, every node has at most two children, there is a well 

defined right child, there is a well defined left child, no right child and so on and so forth. 

So, now let us look at the search property, all the keys here are less than 5, all the keys 

here are all more than 5, at every node you can verify the properties. 

As you can see all the keys to the left of 4 are 1 and 3 and they are smaller than 4, all the 

keys to the right of 5 are larger than 5 and so on. On the other hand, here you note that 

this is not a binary search tree, because it is not a binary tree. We do not even worry 

about whether one can meaningfully answer the query about whether the search property 

is there or not, it is not a binary tree and therefore, it is not a binary search tree. So, 

therefore the first thing is that every binary search tree is a binary tree. 
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Now, let us look at the best binary search trees that we could have. Now, what do I mean 

by best binary search trees? They must be binary search trees and their average depth 

must be as small as possible, ((Refer Time: 13:54)) let us go to the previous example, 

observe that there are very long paths in this binary search tree. For example, there are 4 

plus 3, 7 keys here and observe that it would have been better if 3 had been placed here, 

1 was to the left child of 3 and 4 was here. 

It would have a binary search tree which was less deeper or shallow over than the binary 

search tree, I hope the example was clear. This binary search tree is a binary search tree 

which is good; however, we want to have what binary search trees which are has shallow 

over as possible. In this case, observe that observe the mouse point there if I moved 3 

here to this place and made 4 the right child of 3, then you would have add a binary 

search tree which is full or all it is a binary search tree of the leaves depth for 7 keys. 

Complete binary search tree is what we wish for, it is the links are completely filled, exit 

possibly at the last level which also is organized from the left most child onwards to the 

right. So, this is something that you must be already familiar with from the previous 

lectures, so let us not spend too much time on this. So, this is the complete binary search 

tree, it is also called a binary heap. 
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Now, let us just look at the inorder traversals of binary search, we have different 

traversals, so we all know by now what the inorder traversal of binary tree is. So, observe 

that the inorder traversal of a binary tree is it is a binary tree, so you recursively list the 

left sub tree, then you list the parent node, then the right sub tree. So, let us do this now, I 

list 2, then 5 then 7 then 9 then 10 then 15, because 15 does not have a left child, so I 

explore. 

Find out this is a null set it does not an address, it is nothing to be printed. So, then I print 

15, then I go here prints 17, 20 and 30. So, observer the nice property it is worthwhile 

trying to implement yourself and verify this from binary search trees, check that the 

output of an inorder traversal of a binary search tree is always a listing in the increasing 

order. This immediately tells you that the smallest key in a binary search tree is a left 

most node and the largest key is the right most node, we will come to this in a minute. 
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But, before that let us look at how to find whether a given key is present in a binary 

search tree or not and I suppose to the earlier lectures, in this lecture I am putting out 

questions that you can think about what is the best running time possible, what is the 

worst running time possible and how is this connected to the depth of the binary search 

tree. 

So, what is the find function as you can recall from the dictionary ADT, the find function 

takes an argument which is a key and then pointer to the tree and returns a pointer to the 

node that contains the key and if the return value is null, it means the key is not present. 

So, let us look at the piece of code, if t is null then you return t, saying that essentially 

saying that you have not found the key. Otherwise, you check if the key which is the 

argument that has been passing to this function is smaller than t pointer at key. 

In this case let us say t was pointing to this node, then you will compare key with 10, if it 

is smaller than 10, you recursively find the key here in the left sub tree that is what this 

one says return find key in the left sub tree, otherwise you find the key in the right sub 

tree, if it is larger. Otherwise, if it is neither less than nor greater than, then it must be 

equal, there is no other possibility therefore you return a pointer to the node at which you 

are inspecting. So, this is the recursive find. 
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Iterate find is also conceptually fairly simple and this is one of those nice examples 

where the iterate code and the recursive code have more or less has same number of 

statements, typically recursive functions have much lesser statements than iterative 

implementations, but here is an example where the iterative implementations is more or 

less have the same length as the recursive implementation, actually it is even little 

smaller I would say. 

Find key, ignore the comparable and from the pointer t, so all around I am saying is the 

key must come from a set which is a comparable set, this must have been written slightly 

differently, t is a pointer to the tree, what you do is you check, you explore the tree 

guided by the key. So, what is I say, if t is not null and t pointer at key is not equal to 

key, that is at the current node if you do not find the key that you are searching for. 

If key is smaller you go down and search to the left, otherwise you go to the right and 

search for it at return t. Therefore, the iterative find kind of tells you that using the key 

value the search can be guided through the different links in the binary search tree, 

indeed there is a unique path as you can imagine, because of the order. For example, if I 

was searching for the value 6, let us I just check the iterative find will go first and 10 go 

to the left, because 6 is smaller than 10, here it will go to the right, because 6 is larger 

than 5, here the search will go to the left of 9, at 7 you will find that 6 is not equal to 7, 

then t then goes to the null pointer and then you return saying that null has been 



encountered that is a message that the key has not been found. Indeed you can use this to 

insert by doing this kind of search and inserting it whenever you find a null, we will see 

this again in a few slides. 
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Exactly, what I said proceed down the tree as in the iterative find implementation, when 

the new keys not found, ((Refer Time: 20:42)) let us just see this when the key is not 

found, then you will actually reach a null pointer, at that point you just insert it at that 

place, it depending on the order. 
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So, now let us just imagine that you have some data 1, 2, 3, 4, 5, 6, 7, 8, 9 inserted into a 

initially empty binary search tree and inserted it into this particular order or in the reverse 

order, let us assume that you have done this, now you can imagine here is a small 

exercise, you can check that is if you inserted in this order or in the reverse order, what is 

the depth of the binary search tree. 

Similarly, if you inserted at the median first that is you inserted the middle element, let 

us say it is 5, the median element is 5 here, you inserted 5 first, then you have inserted 

the median to the left which should be 3, then the right median recursively if you did 

this, what would be the depth of the binary search tree. This is the comparison that you 

must perform. So, this is left as a small exercise for you to analyze and write down a 

formula for the depth of the binary search tree. 
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Here are two nice properties that I have mentioned in the few slides back, the smallest 

element of binary search tree is a left most leaf that is the first element in an inorder, first 

element to be printed in an inorder listing and the last element that we have listed in our 

order listing is the largest key in the binary search tree. 
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This observation is very useful for us to answer the following question which is called 

the successor node. So, let me ask you, if you look at this node the key here is 10, if you 

have to answer the question which is the node which contains the next largest value, 

which is the node that contains the value just larger than 10 in this binary search tree. As 

you can see the example is 17, but observe that the answer lies in the analysis in the 

previous question that the key smallest, if the binary search tree is the left most leaf and 

the key largest in a binary search tree is the right most leaf. 

Therefore, the smallest key larger than 10 is here and the largest key smaller than 10 is 

here that is you go to the left child and pick the largest key and you go to the right child 

and pick the smallest key, let me repeat this again. Just in case I created confusion, you 

go to the left child and print the first value that is printed by an inorder listing. For 

example, the smallest key larger than 10 is 15 and observe that the inorder listing will 

print 15 first and that is this smallest value larger than 15, larger than 10. 

The smallest value larger than 15 is 17 and it is the first key that is printed by the inorder 

listing, then you go to the right child. Similarly, the largest key smaller than 10 is 9 and if 

you go to the inorder listing 9 is the last value to be printed. Similarly, the smallest key 

larger than 5 is the value 7. So, this is the small piece of code if you want to know the 

next larger node in a certain node sub tree that is t is given as a pointer, so let us say it is 



pointing here and you have to print out, return a pointer to the node that contains the next 

larger value. 

So, if the right pointer is null, because you are looking for the next largest value, then 

you say that the current node is a largest, in this sub tree there is no value which is larger, 

otherwise you return the smallest value in the right side. So, that is captured by this 

particular picture, I have three example nodes at 10, at 15 and at 5. 
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Same with the predecessor node, it is a symmetric you just check if the left child is null, 

if the left child is null, then you know that the key is a smallest value in the tree. 

Otherwise, you find the largest value in the left sub tree. For example, the largest value 

smaller than 10 is 9 and it is the largest value in the left sub tree, so this is the logic. As 

you can see, if you have done a binary tree implementation these are all very easy 

functions to implement apart from just the structural binary tree traversal, you only have 

to do these comparisons that is, the search properties you have to implement. Every ever 

it is just a very simple comparison to be done. I encourage you to write these pieces of 

code yourself by the code is already almost here in this slides. 
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So, anyway come to the last topic when we come to talking about binary search trees, 

how does one delete a particular key? So, let us assume that would deletion be harder 

than insertion, insertion remember was quite easy, you just traverse the tree, guided by 

the particular key you want to insert, if you found that in to the tree you say that you 

already found it, if you did not find it you will reach a leaf node and inserted it as the 

appropriate child of that particular leaf node that is the insertion row. 

Why is the deletions slightly more challenging than insertion, let us say you want to 

delete 5. How does one actually reorganize the binary search tree, so that you still have a 

binary search tree that is why deletion is conceptually little more challenging than 

insertion. So, let us do some three cases which will essentially illustrate the challenges of 

deletion. 
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By the way deletion, can we done in multiple ways if you are writing programs, so you 

could just mark the node to be deleted, it is very quick and you can do the deletions steps 

once there are lot of deletions to be done. So, remember that if you are writing a program 

for maintaining a large binary search tree which is typically a dictionary of words and 

you are eliminating words from the dictionary, you might want to actually mark all the 

words and delete them in a batch. 

Sometimes, something that you have wanted to delete if you wanted to re add it again, if 

you wanted to add it again, then you just have to flip the deleted flag. Therefore, these 

are the plus points, the minus points or the negative points is that you have to maintain a 

additional bit, additional flag for whether something has to be deleted or not. Because, 

you have this additional flag, if you want to do a find, you will have to check the value of 

the flag and you might have to change some of the pieces of code that you have already 

written for min and max. 

So, if you have a binary search tree in this, some nodes are negative with delete flags and 

so on and so forth and then if you want to know what is the minimum we have to do 

some extra work. For example, if you want to know that what is the minimum in the 

binary search tree with 2 having the delete flag, then observe that 5 is the correct value 

and you will have to modify your min and max function to be able to get the correct 

answers. So, these are the challenges of deletion. 
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Let us do some lazy deletion in this example and each of these examples are interesting, 

you want to delete 17, observe that the 17 has no children. Deletion is conceptually easy, 

then you want to delete 15, now so this is the bit of the challenge, because 15 has a single 

child and we will see that conceptually whatever you will imagine would be right, you 

just take the right child and 15 does not have a left child and it has a only a right child. 

So, take the right child 10, make it the right child of the parent of 15, let me repeat this. 

You want to delete 15, 15 does not have a left child, you want to delete 15, delete it, 

through it out of the tree and take the right child of 15 and make it the right child of 10. 

So, is the well defined step, then when you come to delete 5, you have a challenge. If 

you delete 5, how does one make a resulting data structures binary search tree again. So, 

this is what we are going to look at, let us just see this. 
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Deleting 17 is easy just delete it, when there is only a single child it is again easy. 

(Refer Slide Time: 30:10) 

 

So, if you want to delete 15, just connect 20 to 10. Now, when you want to delete 5, what 

you do is replace some node with descendant whose value is guaranteed to be between 

the left and right sub tree, that is you pick a descendant which is the smallest value larger 

than 5 and copy it is value here, that is the simple delete. Let us go through the logic 

again. Whenever you come up with this challenging situation, all that you have to do is 



go to the right child, pick the largest value. Observe that if it did not have a right child 

((Refer Time: 30:47)) it is captured in this situation, in this case. 

Now, it has both the children which means it has a right child. So, you go to the right 

child and pick the largest value in the right sub tree which is smaller than 5, pick this 

smallest value in the right sub tree which is larger than 5. In this case it is 7, you copy the 

value 7 here that is all, so somehow. So, this slides seems to have gone missing, so what 

you do is you take the smallest value larger than 5 by going to the right sub tree and take 

this value and copy it here and delete this node. So, this is the implementation the delete 

function, let me just go back. 

(Refer Slide Time: 31:32) 

 

Observe that this is just a structural change, you go find 17, it is a leaf just delete the 

node from the tree, it is a structural change no work needs to be done. This also is a 

structural change after you have found the node that contains 15, you check that it has 

only one child and you take that, that is it has only a right sub tree, in this case you take 

the right sub tree and connected to be the right child of the parent of 15, that is clear. 

The same is true if you have only a left sub tree at 15, may be you have 14 and 13 all that 

way you could do is take 14 and 13 connected to the right sub tree of 10, delete would be 

done. Now, let us come to the third case ((Refer Time: 32:19)), if you have two children 

then conceptually also it is not hard, but it is new. You want to delete 5, go to the right 



side, pick the smallest value larger than 5 and copy it here and delete that particular value 

from the tree, you have a binary search tree it is very easy to analyze. 
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Therefore, what we have seen is that binary search trees are very nice, it is possible to 

insert, delete a query, conceptually they are very easy and they are very useful to 

implement dictionaries though I stored only values which are numeric values in the tree, 

it is possible to implement all these things for the other values too. So, other data types as 

long as they are comparable, that is why I said that you must have a well define 

comparison between any pair of keys. Now, when a binary search tree is the best, when 

they are shallow? 
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Shallow BSTs are best. So, I will allow this is an exercise for most of you to think about 

as to and this has already been given as a small exercise a few slides back, insert into a 

binary search tree in increasing order and in decreasing order and in the best order where 

the median elements are repeatedly inserted into the left tree and the right tree, 

respectively compare the depth of the binary search trees. The shallow at the binary 

search tree quicker the finds and quicker the update operations. So, therefore the 

challenge now is how does I maintain a shallow binary search tree or a low depth binary 

search tree. 
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There are multiple algorithms in the literature, in the text books, you can use balancing 

approaches for AVL trees, Red Black trees, you can also use Splay trees and then you 

can also use B trees. So, as you can see in this lecture, we have looked at the basic data 

structure, the binary search trees which are used for implementing dictionaries. All the 

methods as you saw are very simple modifications to the binary tree implementation that 

you have already done. 

Now, the only things that you need to implement when you have to implement a binary 

search tree on top of a binary tree is that you have to ensure that the key values which are 

present at set at the nodes are appropriately combined and inserted. All the code was 

present in the slides and I encourage you to go out and implement them. In the next 

lecture we will look at the heap data structure. 

Thank you very much. 


