
Programming and Data Structures 

Prof. N.S. Narayanaswamy 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Lecture - 13 

Merging using Queue ADT and Queue types 

 

In the second lecture on the queue abstract data type, let us take a look at the 

programming exercise in which we are going to use the queue implementation that we 

finished in the previous lecture. So, recall that in the previous lecture, we looked at the 

queue of some data type, we looked at the methods, we came up the implementation, we 

compiled it, we made an object file and we made the appropriate interface files. 

In today’s lecture, we are going to take a look at this implementation and we are going to 

use it in an interesting programming exercise. Let us go to the description of the 

programming exercise, and then let us go to the program and see the implementation and 

the execution of that particular program. So, again this is likely to be just a short lecture 

approximately 20 or 25 minutes long and most of it will be an analysis of the code that 

we have written. 

(Refer Slide Time: 00:58) 

 



So, the exercise is to merge two sorted list. 

(Refer Slide Time: 01:06) 

 

So, this was the queue abstract data type, now let us go directly to our problem. 

(Refer Slide Time: 01:11) 

 

So, the programming exercise the following you have given two sorted list of integers 



and you have to output Q 3, a queue with a merged list in sorted order. So, you can 

imagine that this is standard exercise that you might find in physical education classes in 

a school, you have two rows of students were arranged in height order. And the physical 

education teacher ensures that the two rows are merged into a single row with all the 

students in the correct height order in increasing order of height. This is something that 

most of you has gone to school would have seen as a simple exercise. So, that is exactly 

our programming exercise. 

So, the first list is in queue Q in Q 1, it is a sorted list of integers, you can think of it as in 

ascending order and the second one is again a sorted list, you can think of this is in 

ascending order. So, now what we should do is, let us change it, because I have written 

min here, the queue Q 1 is in descending order and Q 2 is in descending order and the 

resulting queue should also be brought into descending order. 

Now, let us just look at the Pseudo code for this in terms of the functions that we have 

written. If the two queues are not empty, then you pick the front of the Q 1, front of Q 2, 

this is the peak front functions take the smallest of them, take them as next. Now, keep 

index is equal to 1 the front of, if next is front of Q 1, else index is 2. So, now what do 

we do, we dequeue the next element from Q 1 or Q 2 appropriately and enqueue it into Q 

3. That is we removed this step, only finds the minimum by robbing into the, or peaking 

into the two queues. This sentence keeps track of which queue you peak into and this one 

dequeues from that Q and this one inserts that element into Q 3. 

Now, if Q 1 is empty and Q 2 is non empty, then what you do is, you just enqueue by 

dequeue from Q 2 repeatedly till Q 2 becomes empty, you enqueue to Q 3. And if Q 2 is 

empty and Q 1 is non empty, you repeatedly do the same thing by dequeueing from Q 1 

and entering it into Q 3 and repeated till Q 1 is empty. So, this was really the, ((Refer 

Time: 03:57)) this is the programming exercise and we are going to as you can see form 

the Pseudo code itself, it is a crisp piece of code, where we essentially use the functions, 

we have designed in the interface. In the Q implementation, whatever methods we are 

implemented are exactly what is used expect for a min function kind of a thing that I 

have listed here. 



(Refer Slide Time: 04:28) 

 

Now, let us go to our program, this program is in merge dot c. 

(Refer Slide Time: 04:30) 

 

I include interface dot h, let us look at the first method, it merges two sorted queues, 

merge q 1 and q 2. What does it do? First, it creates a queue called q 3, whose capacity is 

q 1 capacity plus q 2 capacity. Then, what does it do, while the two queues are non 



empty, if the element in the head of q 1 is smaller than the element in the head of q 2, 

you enqueue into q 3, the element at the head of q 1. 

Otherwise, you enqueue into q 3, the element at the head of q 2 and remove it from q 1 

and q 2 respectively. Otherwise, while q 1 is not empty, you put all the remaining 

elements into q 1. Otherwise, you put all the elements of q 2 into the queue q 3 and 

return q 3; this is exactly the pseudo code that we had seen. Then, we have a print 

function, the print function is also interesting, because it is a use of the dequeue function. 

So, it takes q as an argument and while the q is not empty, it prints the elements of the q 

1 after the other. 

(Refer Slide Time: 05:52) 

 

Now, let us just looked at the main function, main function is written in such a way, so 

that you can get a flavor of the utilization of all the different methods that we have 

implemented. The first statement is to create q 1 with 6 elements. Now, observe that this 

6 is not very important, you could have actually put a scanf here, let the value of the 

queue and then created this queue, which is perfectly fine, but that is not what I have 

done, because I just want to show you the utilization of this queue. 

Now, you have q 2, now you create q with 7 elements and because we are doing a 



circular queue implementation in our code, we have used one more location then what is 

required. Now, we have a pointer for q 3. So, now you do the following sequence of an 

enqueues, you enqueue 1 into q 1, then 3 into q 1, 5 into q 1, 7 into q 1 and 9 into q 1. 

This just done, just to make illustrate the concept that you can essentially enqueue a 

sequence of elements and you can even export this by interacting with the user and 

putting the elements into a loop. 

Then, you enqueue into q 2, the elements 2, 4, 6, 8, 10 and 11, so observe that in 1 queue, 

we have only 6 elements, in the 2nd queue, we have only 5 elements, that is in q 1, we 

have 5 elements and in q 2, we have only 6 elements. Now, we merge the two queues and 

we print out q 3, so of course, there are other methods and I am not showing you, I am 

not checking, whether the queue is full and so on and so forth, but is empty is being 

check. Of course, here I should have check, if the queue is full or not, but since it is just 

TA example, I am not check if the queue is full. 

(Refer Slide Time: 08:06) 

 

That is a TA merge program to merge two fixed queues just to show you the example, but 

it is very easily modifiable by interacting with the user, who runs the program. So, let us 

compile merge dot c and you will recall that one has to include into this compilation or 

link it with the object file that we have, otherwise, a compilation will fail. 



(Refer Slide Time: 08:39) 

 

Now, let us see, what happens if I leave out that? As you can see, what it says it 

compiles, but then it says that it cannot understand the symbols create queue, it cannot 

understand dequeue, it cannot understand enqueue, it cannot understand isEmpty, it 

cannot understand peak front, etcetera. In the earlier lectures, I did not show this to you, 

but now I deliberately made an error by not including the object file or liking the object 

file during the compilation and you can see that the compilation fails to recognize these 

particular functions. 

Though, the compilation did not have any errors, it says that you must read the message 

very carefully, it says that in the function merge create queue was not understood, in the 

function merge dequeue was not understood and so on and so forth, also in main. So, 

look at this error, it says linker command failed with exit code 1. So, it says that it was 

unable to link these particular functions which are available in the header file. 

Now, let us solve the problem by linking queue array dot o, now the compilation has 

succeeded. Now, I have the merge program as you can see the merge program has 

merged the two arrays into a single array in ascending order, so this really treated as a 

queue. So, as you can see all the queue methods where used to merge the two queues, 

which were there. Recall that 1 queue had 1, 3, 5, 7, 9; the second queue had 2, 4, 6, 8, 



10 and 11 and observe that both the queues have been merged into ascending order. 

So, this really is a very simple, but many of you will not know this merging procedure 

would have seen it as a very important thing in sorting algorithms like merge sort, which 

are recursive sorting algorithms. So, what we have done is, we have implemented a very 

quick merge using the queue abstract data type. So, as you can see the code is very crisp 

and very easy to build from the different individual functions, which we have designed 

and implemented with the queue abstract data type. 

(Refer Slide Time: 11:28) 

 

To the extent that the merging program is almost exactly what you see in the 

presentation, there is absolutely nothing new except for this create queue function and 

then we already saw this loop which was there and the most important thing is that this 

way of programming ensures that if you make a good presentation and if you understand 

your functions clearly, then writing a program is extremely simple. 

Therefore, whenever you use an abstract data type, it is very important for you to define 

the data type completely and then use it in your implementations, this is a very important 

message. This completes the utilization of the queue abstract data type in a very 

important programming exercise, you will get a similar programming exercise for you to 



program in this week itself, it will be fairly challenging and we will come to it by 

tomorrow. 

In the next lecture, what we will do is, we will look at the different types of queues. This 

is a very fundamental difference between stacks and queues, there is only a single type of 

stack, but there are multiple types of queues that you would want to maintain and we will 

see what kind of queues are there and why they are important. And let us just continue on 

to that particular presentation itself ((Refer Time: 12:49)), so let us just looked at the 

different types of queues which are there. 

(Refer Slide Time: 13:24) 

 

So, this is the queue abstract data type, I do not have to go back and say point out, what 

are all the different data items which are maintained in the data type and what are all the 

different methods, we have seen it. There is enqueue, dequeue, there is peak front, there 

isEmpty, there isFull, there is size, these are all the methods and the data items are the 

array that contains the q and so on and so forth. 



(Refer Slide Time: 13:46) 

 

What are the different types of queues? As you saw, the implementation of the queue was 

actually of a circular queue. Now, it is important for you not to get confuse that a circular 

queue is a special type of a queue, a circular queue is actually a circular array 

implementation of the queue abstract data type. I repeat, the circular queue is nothing 

else, but a different implementation of the queue data type. What do I mean by this? The 

circular queue does not provide the user any new specific features, because of it is being 

a circular queue. It only provides you an efficient utilization of the arrays space to 

maintain the queue. 

And the enqueue operation incremented the rear by 1 modulo N and the dequeue 

operation incremented front by 1 modulo N. The queue isEmpty if rear is equal to front 

and it was full if rear and front differ by 1 and it is a better utilization of the available 

array implementation, it is a better utilization of the available array in this particular 

implementation. So, therefore we have a special kind of an implementation of queue data 

type which is the circular queue, sometimes it is also called the ring buffer. 

There is another queue which is called the double ended queue, we will come to this 

queue a little while later. A double ended queue is otherwise called a dequeue or a deq, 

you insert and delete from either end. The importance of this queue will become clear, 



when you think of the following question that in normal queues, people enter the queue 

and decide to actually exit from the queue, at which point of time which is lead the queue 

from wherever they were. 

Therefore, while we should be able to insert into the rear end of the queue, we should 

also be able to allow people to exit from the rear end of the queue. So, this is what a 

double ended queue is, where we would like to insert and delete elements from either 

end of the queue. 

(Refer Slide Time: 15:56) 

 

Now, the very important queue is, what is called a priority queue and priority queues as a 

name suggest is not just a queue in which the elements are organize in a first in first out 

fashion, every element has a certain priority. So, clearly I mean, if a certain a very 

important person arise on a road, then such a person gets a higher priority to use a road 

and everybody else is arranged. To stand and weight for this higher priority person to go 

ahead in the queue, but while this person goes ahead in the queue in the remaining 

people with the same priority have the same relative positions in the queue. 

So, this kind of a feature is associated by the is definitely provided by the priority queue, 

that is, it is a queue first of all, which means elements are enqueued and dequeued, but 



items can be ordered by certain additional values called priorities. Element with a lowest 

key value has the highest priority and this one is always to be at the front, that is the 

element of the highest priority will always be at the front of the queue. 

Therefore, what are all the things that we must do, enqueue function has to be modified. 

If you insert an element into the queue that is at the rear of queue and it has the highest 

priority, it must somehow be ensured, that it comes to the front of the queue and all other 

positions must be readjusted, very importantly it must be readjusted quickly. Similarly, if 

you want to dequeue, that is, we want to remove an element from the queue, then you 

must modified, so that you get the element of the least value. 

In other words, the element of the higher priority and then the next element must be 

organize, so that the next minimum can be obtain very quickly, so this is the dequeue 

operation. So, you can again imagine that if somebody has a higher priority, such a 

person must be brought out of the queue first and the next person or the next data item, 

which as the best priority or the highest priority must be arranged. So, that it can be 

remove quickly, when the time arises for that element to be removed. 

The other operations are that you might want to update the priority of an element based 

on certain things. Those of few, who are studying operating systems or who have some 

exposure to operating systems will recall that priority queues play a very important role 

and changing the priority of a element is a very important operation done by the 

operating system. 

So, the two ways of implementing the priority queues, so let us just look at the methods, 

there are enqueue and dequeue to be modified, we must also have an additional method. 

So, in this sense a priority queues very different from a circular queue circular queue 

implementation of the queue itself or the circular array implementation, because provides 

an additional method, where the priority value or the key value of an element in the 

queue can be changed. 



(Refer Slide Time: 19:15) 

 

How do we implement priority queues, there are two ways of an implementing priority 

queues, one is that, you can implement it in an unsorted list. For example, let us this look 

at this, if this queue 4 is the head of the queue 5 is the next element of the queue 2, then 

and 1 is the last place. Then, whenever we want to insert, you just insert the met the 

beginning or the end of this particular sequence that should not be very hard. But, 

remove min or finding out the element of the lease priority will essentially require us to 

traverse the whole list and find out the element of least priority. 

Therefore, to identify the element of least priority can take as much as the time taken to 

traverse the whole list. So, imagine that if you have queue of a 1000 people and you have 

to pick the element pick the person with the highest priority, then you have to inspect 

1000 people’s priorities before you pick them from the queue. Now, pick them from this 

unsorted list. If you perform an implementation with a sorted list, then whenever you 

want the element the higher priority you can immediately remove it in order of 1 time, 

you can immediately remove the element from the appropriating. 

But, whenever you have to insert in element, you will have to go through the whole list 

and find the correct list insert the element into. The same is true with when you want to 

change the priority of elements, whenever you want to change the priority of the 



elements, you will have to actually do quite a bit of work by inspecting each element, 

changing the priority and then reorganizing the list. 

(Refer Slide Time: 20:48) 

 

Where are priority queues, use the priority queues are use it what are called round robin 

schedules, the round robin scheduler, you dequeue the element, this element has the 

highest priority and while that element is being service, the priority of the other elements 

keeps increasing over a period of time. And after a certain amount of time, if the service 

of the element is being completed it course out of the queue, otherwise it enters back into 

the queue with a least priority. 

In the mean while, the priority of the other elements have increase, among these you pick 

the element of the highest priority and then service. Therefore, these are called round 

robin schedulers. So, service you are scheduling the elements in this queue to be serviced 

here, you can imagine this to be a CPU and these are the processors manage by an 

operating system. So, round robin schedulers as are extremely popular schedulers. 



(Refer Slide Time: 21:45) 

 

Where do you find queues use like I was just saying, queues are views in process 

scheduling, that is an multi programming environment, where there is a single processor 

and multiple processors waiting to be executed. Then, multi programming provides each 

process, the illusions of being the single process using the CPU. So, process scheduling 

extensively uses the concept of queues and priority queues. 

Similarly, printed queues and key stroke queues are essentially hardware queues that are 

maintained, for example, if you send a set of jobs to the printer, then to be printed, then 

they are all the printed in the order in which they have arrived at the queue. Queues also 

form an auxiliary data structure for different algorithms in one of the upcoming 

assignments, you will implementing queues and priority queues are use in efficient 

implementations of many algorithms. And we will study the implementation of a priority 

queue in about two weeks in that will be in your penalty made week of lectures for this 

online. 

So, that so this brings to an end in this whole discussion, the sequence of 3 lectures on 

queues of course, two of the lectures were merged into 1, so that we have a single solid 

lecture to look into. So, we looked it the vanilla queue abstract data type, we came up 

with the circular queue implementation, we use this circular queue implementation in a 



merging program, merging program is not just some ordinary program, it is use and 

recusal sorting algorithms like merge sort. 

And then we looked at the different types of queues which are available and what their 

different purposes are. In subsequent lectures, we will move towards non-linear data 

types like trees and heaps, and then using heaps we will implement priority queues. We 

will definitely look at more implementations and this brings to an end, this week’s 

lecture on the queues initially at planned that it to be 3 lectures. But, I am into 2 lectures 

which will be uploaded enjoy these lectures and a look forward to a commencing 

questions also look forward for the programming assignment in a short. 

Thank you. 


