
Programming and Data Structures 

Prof. N. S. Narayanaswamy 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Lecture - 01 

Outline and C Review 

Hello Hi, wish you a happy 2015 and I hope you enjoy this course. The course is a 

programming data structures course offered by NPTEL and my name is Narayanaswamy 

and this is the first lecture of the first week of this course. The introduction to this course 

itself is interesting, we are going to see that this whole recording is made on my machine 

using four different pieces of software. 

The screen of my machine is being recorded by a software called Camtasia, it records my 

presentation, it records my face, actually it records another the output of another 

program, which is called photo booth on my computer which is displaying my face here, 

it is also recording audio. And after some time when I move to the slides, it is going to 

record the screen with the power point slides unit and then I am going to show you some 

programs. 

So, I am going to open a terminal and open a editor, it is going to record that also. So, 

observe that this is one big program the Camtasia format, which is actually recording the 

screen of my machine and this machine is running four different programs and it all 

looks very complicated and hope fully at the end of this course by seeing this experience, 

you will be able to appreciate the challenges that a programmer faces. So, periodically I 

will move between this application that displays my face on the screen therefore, you can 

see it. 

But, most of the time you will be seeing either a set of slides or you will be seeing a 

program or you will be seeing the execution of the program and I will be talking to you 

about it, which will definitely be recorded. So, now I am going to move to the slides and 

I will be making such connectors in between and that should not destructive too much. 

So, I am just going to go to my slides, thus you can see my whole screen and the 

applications which are there, my slides are made in power points and I run power point 

into monitor the full screen, now I am going to play from start. 



(Refer Slide Time: 02:29) 

 

So, let us start, so the course as I said before is programming a data structures, this is the 

first week and this is lecture 1 and we are going to keep this informal. So, you will find 

that I will maybe started a little bit and so on, but technically the course is going to be 

complete and very interesting. In other words, I am not going to edit the videos to 

sanitize it and clean it up, so that everything is very clean and we do not hear ((Refer 

Time: 03:03)) moves and so on, they are going to be part of this course. 

So, this is lecture 1 and the lecture 1 is going to last approximately 20 minutes and we 

are going to have a short discussion of the outline of the course and also a review of C 

programming. So, my name as I said before is Narayanaswamy by teacher IIT, Madras. 



(Refer Slide Time: 03:27) 

 

So, here is the outline of the course, the course is going to be the design of data 

structures, we are going to instantiate data structures, we are going to create and free 

space and we are going to manage data structures which means you are going to add 

keys into the data structures, we may delete keys from data structures, we may search an 

existing key, we may search a data structure for a key to respond with whether the key is 

present or not. 

And after describing data structures, we will use example programming exercises to 

implement these data structures and all the programming will happen in the C 

programming language. Many of you have first sent emails to me already asking about, 

whether you can program in java and C plus plus, the answer to these questions is no, 

this is going to be a C programming course and I expect a basic knowledge of C 

programming, the ability to write a program, the ability to compile the program, the 

ability to debug the program and run the program. 

And while data structures itself in most B.Tech, BE or Computer Science programs is 

often a course with the significant theoretical component, which means that there will be 

a lot of mathematical analysis. In this course, we will deliberately stay away from 

performing mathematical analysis of any kind. So, in other words there will be minimal 

and almost nonexistent asymptotic analysis. So, if you are looking forward to learning 



asymptotics order notation, O omega, small omega, theta and all that this is not the 

course for you. 

This is a course where you will do a significant amount of programming by 

implementing appropriate data structures that is the focus of this whole course. 

(Refer Slide Time: 05:28) 

 

So, let us go to the reference material for this course, we will use a combination of these 

references, as I said these are reference material, these are all text books. So, the book by 

Dietel and Dietel, C how to program is a good reference for software design methods, the 

C syntax and it is also very rich in terms of programming exercises, starting from a 

beginners level right up to an advance programmers level. 

Data structures in C is another book, it is written by L. S. Horowitz, and Sardar Sahni 

and this is definitely a reference material for you to understand the different data 

structures that we will study. How to solve it by computer by R. G. Dromey is a classic 

and it talks about how to design programs. The last one by Nicklaus Wirth, the inventor 

of the Pascal programming language is title algorithm plus data structures equals 

programs and this is a reference material and I encourage you to take a look at. 



(Refer Slide Time: 06:37) 

 

So, the lecture plan it is an approximately 8 week course, there are 3 lectures per week. 

Each week will be broken into approximately 6, 20 minute modules. For example, today 

we will have two 20 minutes modules, the videos will be released on Monday, 

Wednesday and Friday at about 6 Am and all these 3 days and every week we will give 

one programming exercise. Typical submission dead line for the programming exercise 

will be 2 weeks from the date of release and submission will typically be on a 

Wednesday morning again, re-test and the next assignment is also released almost at the 

same time on a Wednesday. 

There is a forum on the course website at the NPTEL portal and this is made by me and 

my teaching assistants and we will respond to your queries which are technical in nature 

and we will decide which of the questions that you have post that we should answer. We 

will for example, not post code there, we encourage you not to post code on the forum 

and there will also be 3 hangouts on air which are planned with the instructor that is 

made. 



(Refer Slide Time: 08:02) 

 

So, what are the material that we are going to uncover, I am not going to cover material, 

so I am going to uncover material and I am using this phrase which was calling by 

professor Ananth, the previous director of IIT, Madras. He said that the role of a teacher 

is to uncover the material to the student and not to cover portions. So, the material that 

we are going to uncover in this course or to start with, we will talk about recursion and 

the usage of pointers in the C programming language. 

And this is really a review of C and it will be a quick review of C and you should be 

willing to go out and experiment and learn C fast enough, so that you can do well in this 

course. We will do examples of recursive programs, recursive functions, a classic 

example is the towers of the Hanoi problem which we will definitely study. Then, we 

will also study abstract data types and abstract data types are abstract descriptions of data 

structures. Many of you have already had questions as to what a data structures, that is a 

very good question and we will address that by formally defining what a data structure 

is. 

The formal definition of a data structures is captured using the concept of an abstract 

data type. And this is the definition and as a C programmer, abstract data types are often 

specified in dot h files and you can also use your abstract data types by using the hash 

include primitive that comes with the C programming language. Then, specific data 

structures that we will study arrays and list and these are the starting, these are the basic 



data types and we will solve different programming exercises using these basic data 

structures. 

For example, we will write program show multiply polynomials, we will write programs 

to represent sparse matrices, that is matrixes where predominantly there are many 0s and 

very few number of 1s. We will then implement algorithms for searching and ordered 

searching for example, binary search. By order searching, I mean searching an ordered 

set. 

We will then look at other abstract data types which most of you may be familiar with 

are hold off, for example we will study the two data types stacks and queues. Remember 

I am not saying data structures, I am calling stacks and queues as data types and we will 

study the stack and queue data type and we will use them in a programming exercises 

like expression evaluation and non recursive implementation of recursive functions. 

For example, we will write a program which is iterative and nature, it is not a recursive 

program and it will solve the towers of Hanoi problem. It will maintain a stack and you 

will see how stacks play a very important role in simulating function calls. 

(Refer Slide Time: 11:30) 

 

We will then move on to non linear data structures which are examples of which are 

trees, then special kinds of trees are expression trees and then we will see study 

algorithms for tree traversal and the application of tree traversal in generating assembly 



code. We will then look at search trees and for example, you might have heard a binary 

search trees and we will look at methods for inserting keys into a binary search tree, 

deleting keys for a binary search key and efficient find key by maintaining the search 

tree what is called balanced fashion. 

Then, we will look at very advanced non linear data structures which are used in 

operating systems to maintain priority queues and priority queues are maintained using 

data types called heaps and we will see how heaps can be implemented on top of the 

basic data type arrays. And the analysis of heaps is often visualized as an analysis of 

some special properties on some underline trees. All these details will follow and you 

need not have to put off, if you do not understand any of these things. 

But, this essentially the syllabus of the course, the last item that we will talk about is 

what is called the dictionary data type. The dictionary data type is a very powerful data 

type in which you can actually ask not only questions about whether a word is present in 

the dictionary, but you can also ask for prefixes is a words, suffix is a words and even 

word completions. So, that would really be the most advance data structure that we will 

study and use in your programming exercises. So, this is really the syllabus of the course 

and these we will, we expect to cover an approximately 8 week’s time. 

(Refer Slide Time: 13:27) 

 

So, what is a typical lecture look like? A typical lecture looks like today's lecture, you 

saw me talking about the lecture itself that would last for approximately a minute and 



then we will go through above 15 to 20 minutes of a presentation of the lecture material 

of the day using power point slides. For example, in one lecture I might describe one 

particular abstract data type that is it is the explicit specification of a data structure. 

And what would be the abstract data type actually be, it would say what are the different 

types of data. For example, you may say that your data type has 5 integers, 5 characters 

and apart from the abstract data type, we will also maintain or describe the access 

methods associated with this data structure. For example, we will look at methods which 

will add keys into the data structure, delete values from the data structure and query the 

data structure for the presents or absents of a certain value. 

Now, the definitions of this method and the description of the data type would be written 

in the C programming language and they would always be put inside a dot h file, this is a 

programming practice. So, not only do you learn data structures, but you also learn a bit 

of programming practice in this course. And then we will write what is called wrapper 

programs, these wrapper programs will instantiate objects of the newly created data type 

and you will see what I mean by this and these wrapper programs will be compiled and 

executed and this is what a typical lecture will consist of. 

(Refer Slide Time: 15:19) 

 

Then, after talking about the data structure by describing the data type and then looking 

at some programs which implement the methods associate with the data type, we will go 

on to the second part of the lecture and we will describe one programming exercise and 



this programming exercise will be explain to you clearly by way of specific Input/Output 

relationships. After understanding the programming problem we will design the program 

and when we design the program, we will essentially make a choice of the appropriate 

algorithms and the appreciate data structures. 

Then, we will move on to the implementation of the design program. What is an 

implementation? We will typically open a file look at a C program, we will analyze the 

different statements in the program, we will essentially look at an implementation of the 

algorithm. Then, we compile the C program, then we will test it, analyze it and compare 

it and the comparison will typically be a comparison between the usage of maybe one or 

two different data structures for one particular programming exercise. 

(Refer Slide Time: 16:37) 

 

So, this is essentially going to the, our typical lecture and now let us move on to a typical 

lecture and let us go and move to one particular program. And this is one warm up 

exercise and it also tells you, what the flow of a lecture is going to look like. So, now 

what are we going to do, we are going to look at very simple program. The goal of a 

program is to sort and I am going to show you an implementation of a very popular 

algorithm called the insertion sort algorithm. 

Now, what we do is we move to a C file which is viewed using an editor, now sometimes 

you may not completely understand what I am doing on the screen, because I am using 

the vi editor. You may use some other editor when you program on your machine, so 



focus only on the C program and do not focus on the commands that I type inside the 

editor, those are not important at all for you to learn programming and data structures. 

Every editor that you use has it is own features and you may choose your own editor. 

Now, the most important thing for you to notice is that when I open this program, you 

will see that the program is very well documented, it is a programming practice that you 

must follow. You will see that there will a initial part, where I will describe what the 

program is suppose to do, I would describe what the input and output is there will also 

the some small about the information has who wrote the program and inside the body of 

the program, there will be some small very informative commands as to the role of 

different statements. 

So, let us go to our program and I am going to move away from this presentation, we 

will come back to this presentation in a sort ((Refer Time: 18:30)). So, that was the sort 

description about what a typical lecture is, what the material to be covered in the courses. 

Like I promise, we will now move to the C program, so we are moving into the second 

part of this first lecture in this first week. 

(Refer Slide Time: 18:59) 

 

So, this is my terminal window and this is the command prompt, I am going to open this 

program, vi is a editor program please do not worry about it and the program have 

already created is called week 1, lecture 1 dot c. 



(Refer Slide Time: 19:18) 

 

So, this is the C program and this is my editor and if you know your C program, we 

should not be confused or we should not have a question has to what the first sentence 

here in this program is the hash include stdio dot h. Now, you can see that I have a long 

C command from starting from this place on words, this completely describes what the 

program does. For example, it says the program is written by me N. S. Narayanaswamy, 

it also says something about what the input to the programmers. 

We will assume the input is 2 lines, the first line is a positive integer value, not larger 

than a 1000. So, this means that when your program runs you will have to given input, 

on the first line and this value should not be larger than a 1000 of course, you can ask 

what happens if you give a values larger than 1000, the behavior of the program is 

unpredictable. In the next line, the input consist of a space separated sequence of the 

number of integers that you have said will be given. 

And at the end of this sequence of integers, you type up end of line character; otherwise, 

which is called you press a return key. Now, the output of the program is describe of this 

line, the output is the input sequence printed out in ascending order in a single line and 

the consecutive elements are separated by exactly one space, that observe the written 

exactly in capital letters. You should keep in mind that when you submit your 

programming exercises, you will have to follow such important rules to ensure that the 



evaluation system does not get confuse by your the output of a program, which it is 

exactly once spaces extremely important this command ends. 

So, now we are into the C programming part of it, this sentence, this statement is a 

function prototype. And if you know the C programming or even if you do not know this 

is the new concept, it is a good programming practice to declare the functions by giving 

the name of the function, the return type and the argument type at the beginning of the 

program. I repeat this such a good programming practice, sometimes it is very necessary, 

but initially it is a very good programming practice to follow this habit of declaring your 

functions. 

In this case observe that the declaration consist of only the prototype of the function, the 

name of the functions is insertion are, there is no return value that is why there return 

void there. And there are two arguments in this function, one is a pointer to integer that is 

int star, the other one is an integer argument. Note that, there are there are no variable 

names here, this is the difference between a declaration and function definition, we will 

see a function definition shortly. 

Now, a declaration is very important, it is very important for the compiler. In this 

example it is not conceptually necessary, but it is very useful in many programs, when 

you become an export programmer that the function definition maybe in another file 

node. The function definition maybe in another file as suppose to the function 

declaration which is here. So, here is a function definition and here is a function 

declaration, now let us go to the main function of your program. 



(Refer Slide Time: 23:33) 

 

So, the main function of the program is called main, it returns an integer and we will see 

how to use these return values very carefully, as we go through this holes. But, really that 

is not the focus of the course, it is that some that human being interested in as an 

program, but we will definitely visited, but not spend too much time up. So, since this is 

simple program it is a review of the C programming language, I have an integer which is 

called a number of keys and I have an integer array of 1000 which can contain 1000 

values which called values, the array is called values and I have and integer variable I 

which I a use an index. 

Now, note that I read the first data item which is an integer. So, here I am reading in the 

number of keys that are going to be stored in the array. Here is a loop, which then reach 

the values one after the other, note the usage of ampersand and the values of i. And 

notice that, this for loop reach starting from location 0, starting from the 0th element in 

the input to the element whose index is number of keys minus 1, that is a total of number 

of keys, number of input elements this is the standard for loop, that you be must a 

familiar with. 

And as you do this I am sure some of you will ask questions like, what happens if the 

user gives data which is the smaller than the number of keys, what if the number of 

values which are given in the input is more than the value of number of keys and so on, 

that is a remark that I have put in saying that this is consider to be future work. And now 



we make a function call to the function insertion sort, sending it values that is observe 

that this is a pointer to the first elements of the array. 

And we are also sending the number of keys, which are the relevant values that need to 

be sorted in the array. Now, the way the program is decide is that when the execution 

returns from this function call, at this point the values array would be now sorted and in 

this for loop, we print the values one after the other with a space between the two of 

them. 

Finally, we terminate the printing by giving a carriage return or a new line and the 

execution ends by retuning the value 0. I hope that was clear that was the execution of 

the main program, now we are going to look at the design of the function call insertion 

sort. 

(Refer Slide Time: 26:55) 

 

So, the function is called insertion sort and it does not return any value that is why you 

see the void here. Now, observe that the data type of the first argument is a pointer to 

integer and you will already recognize that the variable pointer to values contains the 

address of values of 0. Whenever this function called is made, when control enters this 

function ptr underscore 2 underscore values contains the address of values of 0. 

Further the variable size which is a local variable, local to this function contains the size 

of or the number of relevant elements in the values array that need to be sort. Here at to 



local variables from the C programming syntax, you will ensure not get confuse by the 

reuse of the variable name i. Because, when the execution enter this function, the 

meaning of i of this word, this variable name i is completely local to this function. Then, 

I have the other variable call j and I have a temporary variable, which is used to 

exchange the values in two locations in the array. 

So, what is the insertion sort algorithm look like, observe that there is a first for loop, the 

role of this particular for loop. And let me just highlight this region the role of this for 

loop is return in this remark in the ith iteration, the ith element is inserted into the correct 

place in the range 1 to i, that is when the control enters the ith iteration, the goal is to 

take the ith element in the array. 

What is the array called now? The array is called pointer underscore 2 pointer to values, 

which deliberately called pointer to values at as the control enters this loop in the ith 

iteration, the goal is to insert the ith element of pointers to values, the array called pointer 

to values in the correct location inside the elements 1 to i that is our goal. So, let us 

imagine a particular iteration number i and let us understand the next for loop, the role of 

this for loop is to insert the ith element into the correct place, let us see how to do it. 

The way this is done is to move backwards from the i minus 1 with the element up to the 

0th element, that is the role of the index j. The role of the index j is to run from the index 

i minus 1 in the array to the index 0 and in a sense it is running backward, it starts from i 

minus 1 and it goes up to 0. And what is this do, it checks in each loop it checks if the j 

plus 1 with the element, that is in the jth iteration, it checks if the next element, that is the 

j plus 1 with element is smaller than the jth element in the array. 

If it is indeed smaller than the jth element in the array, then these three lines are very 

famous lines, which every programming student would recognize, this exchanges the 

values in the locations i plus j plus 1. These three statements exchanges the values in the 

locations j plus 1 with the value in the location j. How does this happen, temp stores a 

copy of the value in the location j plus 1, then the value in the location j is copied into the 

value into the location j plus 1, then the value in the location j is made to be the value 

which is stored in the temporary location. 

When are these three locations, when are these three statement executed, they are 

executed when there is a wrong order between the j plus 1 of the element array and j plus 



1 with element in the array and a jth element in the array. In other words, when the j plus 

1 with the element is smaller than the jth element in the array, the exchanges if it. 

Otherwise, in other words if the j plus 1 at the element is at least as large as the jth 

elements, then we observe that the ith element as found the current as found it is correct 

place and we break from this iteration using the C programming statement, which is 

break. 

Let us recall what break does, breaks from the enclosing loop which is this for loop that 

is a control after executing this break, exits from this for loop and comes to this 

particular location, which means it will move on to the next element of the array that we 

are sorting here. Eventually I will touch size and then it will getting increase to size plus 

1 and then, the control will exit from the loop. And as you can see by just thinking about 

this little bit, after every iteration a certain prefix of elements of an array are sorted. 

In other words, after the ith iteration the first i elements, that is the elements index by 0 

to i are sorted, let me make this small change. So, that you can notices this I have written 

in the correct place in 1 to i it is actually 0 to i. Therefore, after the ith iteration, the first i 

plus 1 element are sorted and eventually the value of i will become equal to size and 

eventually it will cross, the value of size at which time the control will exit and return 

from this function. 

You will also notices that I have missed the returns statement it does not matter, but 

again I missed it. So, that I can show you it is a good programming practice to put in 

some of these commands, put in the appropriate statements. So, once control reaches 

here it goes to the place where the function was called from which in this programming 

exercise is here. And then, we put in the remarks saying that values the array is now 

sorted, some of you may wonder how does value is get sorted, while the insertion sort 

was executed in this array. 

Now, this is the beauty of passing addresses, which is a very powerful feature of the C 

programming language, observe that ptr of values points to the parent array. If I can use 

that phrase values, which actually contains the values that you wants to sort and this is 

the very useful feature, but also very dangerous feature. If you make some mistakes here, 

in this part of the code in some other programming exercise for example, if you delete 

values, then the values might be completely lost. 



So, it is very important for you to remember to use pointers very carefully when you pass 

them from one function to another function. 

(Refer Slide Time: 35:24) 

 

So, this was the whole program and now I am going to compile this program for you. So, 

that you can see it do not worry about the wq in the vi editor, it means write and quit. 

(Refer Slide Time: 35:36) 

 

Now, I am back to the command prompt and I am going to compile my C program. So, 

let me compile cc is a C compiler and I am going to compile the program that we just 

wrote. And I am going to send the output to this executable, which is week 1 dot 1. The 



compilation is successfully completed and let us look at the kind of mistakes that we can 

make while given inputs and these are the kind of mistake that you are expected to 

program for when you start writing very sophisticated programs. 

So, let us execute the program that we have just return, in other words we have complied 

it and created and executable, let us execute this program. Now, the executable is ready, 

now I have deliberately design the program. So, that there is no message to you, because 

when you submit your programming exercise, there will be no search interaction 

between your program and the program evaluation environment. 

For example, it is useless for you or actually it is dangerous for you to give messages 

like, hello please print your input, such kind of messages are not to be given when you 

submit your programming exercises, just the values need to be given. So, let us give the 

value that we say 6 remember that 6 stands for the total number of keys that we want to 

sort. Now, the system waits for the 6 keys that need to be given, let us give 6 5 4 3 2 1 

and you see the output is sorted an ascending order, because of our insertion sort 

algorithm. 

I have let us run this on an input that consist of negative numbers and you will see that, 

but also works perfectly find minus 6 minus 9 1 0 3 4. And just for the sum of it let me 

introduce 7 which is one more key then what we have set we will give. And as you can 

see, the last element is last even more interestingly, let us give make the same mistake let 

us make a minus 9 minus 6 0 1 3 4 and minus 10 minus 10 is last. 

Now, let us important for you to analyze why, it is not very hard, but it is important for 

you to analyze. Now, let us see what are all the mistake that we can make, when we give 

inputs and these are the kind of mistakes that you must be careful to avoid by reading the 

programming assignment statement very careful. Again let us give 6 values, let me give 

minus 9.0 1.1 minus 2 3 4 5 let us have finish giving 6 now observe that the output is 

highly likely to be some very unpredictable of this is a problematic situation. 

So, you must be very careful when you give inputs true such programs, remember the 

programming exercise was to sort a given set of integers in not numbers. So, this is an 

extremely important think, similarly let us make another input, let us give lesser number 

of inputs then what was counts. So, let us give 6, let us give 2 4 1 3 and 4 and 3 and 



more, more, more and observe that the program is waiting for numeric inputs from you 

and it is skipping all the space. 

So, now, that is minus 7 now the whole input is been given and interestingly it is solve. 

So, this also tells you something mysterious about scanf, we will not talk about it, but I 

encourage you to explore how scanf works. 

(Refer Slide Time: 40:47) 

 

Now, let us go to our program again and make some special kinds of errors just to 

understands and just to revisit the C programming language. For example, the standard 

mistake programmers make is in this scanf they forget the ampersand. Now, let us see 

what is going to happen by compiling our program 



(Refer Slide Time: 41:00) 

 

Now, this is very important observe that the compiler is given only a warning it does not 

say that there is a error it only generates a warning, which means a compilation 

successfully when through. So, let us run our program and see what happens and able to 

see that miss in the ampersand as of fatal on sequence at execution, as you can see the 

execution, terminated with the segments fault and this is a fatal execution. Because, the 

execution of the program was dominated and you have a error that we going to talk 

about, but again you can go out and study what segmentation fault actually means. 

(Refer Slide Time: 41:57) 

 



So, let us go back and correct that error the role of the ampersand is very crucial and you 

must understand what the ampersand actually means. Let us not very hard of few 

practice sessions with scanf will clarify the role of the ampersand, observe here that I 

said ampersand values of i. So, observe that in English you will read it as the address of 

values of i that would get rid of much of a confusion. 

So, I hope you look at the program carefully and look at the execution and different 

kinds of errors that we can make... Also if you notices we have pass the values that is the 

address of values of 0 by passing a pointers to the function, which does the insertion sort. 

So, therefore, this is a simple program, but those of you who are using pointers for the 

first time. So, you should get brave and go out of study pointers use that. 

Because, it is not possible to maintain data structures without being comfortable with 

manipulating pointers in the C programming language. So, that finishes in some sense 

our hands on session and let us get back to our slides. So, I hope you enjoy this session 

of looking at a program which was written by me and you can write similar program I 

encourage you to write similar programs. But, every programming exercise, every data 

structure, every algorithm that you study write a small piece of code make it work, make 

it work and toy and puts and you become a stronger programmer. 

And I am motivation to showing you that is to show you that programming is not hard, it 

is an exercise for to be logical to follow or reject syntax do not forget details like the role 

of the ampersand and so on and so forth to pass pointers carefully to modularize your 

code, that is right appropriate functions to make your program very readable, put in 

appropriate commands, programming likes poetry it is very enjoyable task. So, let us get 

back to the slide to review what more needs to be done before we end today’s lecture 

((Refer Time: 44:47)). 

So, this was a let us program slide where we went to the terminal, we opened our 

program and then made changes to it, studied the code compiled it and executed it and 

understood it is execution. 



(Refer Slide Time: 44:59) 

 

Very importantly what are the different kinds of errors we it made, we should not miss 

the ampersand this scanf and very importantly you must applied to the correct data item. 

And there was another very important think, this was an error that we did not create we 

will defiantly created after going through these slides. And when you use scanf it is very 

important for you, along with the format specifier not to add additional characters, we 

will go back and see what I mean by this, I hope you also note it the value that was pass 

to insertion sort, it was an address. 

In other words, the value that is in read here, the memory location value consist of the 

address of value of 0 and did you also notice that I access pointer to value of i that is I 

access the ith element in the array, whose name is pointed to value. I hope you notice it 

unknown tell you to the reason for these things yours suppose to become familiar with 

these. 



(Refer Slide Time: 46:22) 

 

And other very important think that we did is the also where worried about the efficiency 

that is why we added the break statement, with the break statement remember that we 

avoided unnecessary comparisons. Now, here is a small exercise come up with an 

example where many comparisons would be made, if we did not put the break. Observe 

that the break is not important for the correctness of the program, even without the break 

statement there, the program would have been correct. 

Now, it is very important for you to put the break statement at the correct place, it is very 

important for you to put the break statement at the correct place, you must put it in the 

loop that you want to break out of. Also did you notice the input types when we tested 

the program, only integers and you also notice that the output is highly unpredictable 

when the input types are not respected. What are the outputs, those are not very 

important, we should not really care about what the output is when the input is wrong. 



(Refer Slide Time: 47:37) 

 

So, what is the additional reading that you must do before you get to the next lecture, 

review your C programming from your favorite book. In particular, please become 

familiar with pointers, become familiar with the syntax or scanf, how to pass values to 

pointers, what are return types and so on and so forth. Write as many simple programs as 

you can and come back to the next lecture, we will study pointer, we will study 

structures, we will make function calls and we will also return values from functions and 

that video will be released day after tomorrow morning. 

Thank you very much for your attention and enjoy yourself, I am going to stop the 

lecture now. 


