
Programming, Data Structures and Algorithms 

Prof. Shankar Balachandran 

Department of Computer Science and Engineering 

Indian Institute Technology, Madras 

 

Module - 8A 

Lecture – 09 

What is an array? Why are they needed? 

Example of array: Find average temperature for a year 

Memory point of view: Array initialization 

Example: Find hottest day of a year 

Multi-dimensional arrays 

 

Welcome to lecture three. So, in the last two lectures, we saw basics of C programming; 

and we also saw basic notions of variables and so on. We looked at control structures, we 

also looked at the notion of loops. So, in this lecture, we will see something really 

important that C provides us, and that is the notion of arrays. 

(Refer Slide Time: 00:34) 

 

So, we have seen basic data types like integers, float pointing numbers and characters. 

And these are basic data types. So, you can get numbers or letters using that. But 

sometimes we also need a logical collection of these values; it is not that, just one value 

is sufficient; we need a logical collection of values. And this is where arrays come in. So, 

arrays are what are called aggregate data types. So, it is an aggregate data type of a 

specific ((Refer Time: 01:03). It aggregates data of the same type of elements. You can 

also aggregate data of different types together; we will see that later. These are called 



structures. We will see them later. But arrays are aggregate elements of the same data 

type. So, there are lots of examples, where you need this. One primary thing is these 

arrays are usually fixed size and they are also sequentially indexed. So, we will see all 

these things as we go along. 

(Refer Slide Time: 01:31) 

 

So, arrays are logical collections of the same type. For instance, it could be list of marks 

of a student, it could be temperature that you are recording over a year or you want to 

save matrices and do operations on matrices, and so on. So, these are all examples of 

arrays. And on these arrays, you want to do operations like find minimum, find 

maximum or you want to order all of the elements in such a way that, the names of 

students come in alphabetical order or you may want to search for a particular 

temperature of the day and so on. So, these are common operations. You want to be able 

to read entries into an array; you want to do operations on an array, and so on. And that 

is exactly what we will do in this lecture. 



(Refer Slide Time: 02:14) 

 

So, let us do a little thought experiment. I want to find out average temperature of the 

year. So, I have 365 days. And if I did not have support for these aggregate data types 

called arrays, my program would look something like this. So, I show only the code 

segment here. Let us see what it has. So, there is first of all 365 days; I will need 365 

variables; float, temperature 1, temperature 2, and so on up till temperature 365. I will 

need all these declarations. So, even though I showed dot dot dot, you really need so 

many declarations. And then I am going to find out the sum and the average – find the 

sum and therefore, find the average. So, one thing that I have to do is take all the 

variables one at a time and read through them. So, I have so many declarations and then I 

go on and scan all of them. 

And finally, I need a huge expression, which takes each of these variables and add them 

up and give sum. So, what we have is something really cumbersome. So, we have 365 

variable names; we will have to scan each one of them; and we will have 365 lines in 

which we will scan them. So, that is what you will do in this block here. And finally, this 

one, where you are adding up all the values is also rather cumbersome, because if you 

forget something, you have no way to go back and check which one is missed out. So, 

this is not a nice way to do things. And programming languages give support for the 

same data type; temperature being floating point and have many of those aggregated into 

something called an array. So, let us see the same thing done using arrays. 



(Refer Slide Time: 03:59) 

 

It is much more elegant if we use arrays. So, the first thing you will notice is that, there is 

float temp of 365. So, what you see here is you see that, there is a declaration here; 

which goes like open bracket 365 close bracket. All it says is I do not want a single 

floating point number; I need 365 floating point numbers. And… So, that has to be 

allocated somewhere. As before, we have float sum equals 0 and average. And now, I 

want to scan the elements one-by-one. This whole thing becomes very nice and simple; 

you have seen the for loop before. For i equals 0; i less than 365 i plus plus; scanf 

ampersand temp of i. So, what this loop does is it scans the elements one-by-one and it 

stores it in what is called temp of i. We will see what temp of i means in a little while. 

But, the first thing I want you to do observe is that, let us become much more elegant. 

Instead of 365 lines that you had earlier, now, you have three lines of code, which is 

scanning 365 elements. 

The other thing that we have very nice is just the addition itself. So, as before, we iterate 

over all the elements from i equal to 0 to i equals 364 – both inclusive; and we add the 

temperature to sum. So, you add one temperature at a time and the result goes back to 

sum. At the end of this loop, you have the sum, which is the sum of all the temperatures 

over 365 days. So, if you divide by 365, you get average. So, one thing that you have to 

notice here is that, the sum is actually initialized to 0 here. Therefore, you start with 0 as 

the temperature and then you add on temperature of each of the days to give 

temperatures of 365 days; and then you divide by 365. So, the nice thing about this 



whole thing is it fits into one screen. So, if I want 5 years, all I have to do is ensure that, I 

iterate over 365 into 5 iterations. So, that piece of code is still going to be something very 

very small. So, I do not have to declare so many variables; and the program does not get 

clumsy; and there is less scope for errors when you have arrays than when you have 

individual variables. 

(Refer Slide Time: 06:28) 

 

So, let us go and look at arrays in more detail now. The first thing is – as before, we need 

to declare arrays before we use them. So, the syntax is as follows. So, you start with type 

and then you give an array name and then you give number of elements. So, just like this 

– you specify the type; you specify the array name; and you want the number of 

elements. So, in this case, marks is an array of size 7 and they are all integers. So, the 

key thing is – remember – this is an aggregate data type of type integer here. Similarly, 

in this line, we have temperature, which is an array of 365 elements; and the values that 

it can contain are floating point values. So, one important thing that you have to 

remember is that, when you say int marks of 7 for example, you get something, which is 

contiguous in nature; as in, these are locations, which are continuous in your memory. 

And the individual elements of the array can be indexed as marks of 0, marks of 1, and 

so on up till marks of 6. So, anything which is of the form marks of i, where 0 less than 

or equal to i, less than or equal to 6 is valid. 



(Refer Slide Time: 07:50) 

 

Let us see what happens from the memory point of view. So, earlier, we saw what 

happens to variables from the memory point of view. Let us see what happens to arrays 

from a memory point of view. So, when you see a declaration like int marks of 7, what 

you are really seeing is an array. So, you see memory locations here; I am showing only 

a segment of the memory. And instead of one variable called marks, we are going to 

have 7 variables named marks of 0 to marks of 6. So, this is not a mistake; it is marks of 

0 to six, and not 1 to 7. So, some languages start indexing arrays at 1; but C indices start 

at 0. So, you can think of it as 7 variables namely, marks of 0 to marks of 6. 

And as we did earlier, if you do not have any initialization, the values in the array are 

unknown. You should assume that, these values are unknown. And this could get laid out 

anywhere in the memory just like variables do. The only thing is that, these are going to 

be 7 contiguous locations. So, for instance, let us assume that, marks of 0 was allocated 

address 2731; then marks of 1 would be at address 2732 and so on; marks of 6 would be 

at address 2737. So, this is what I meant by arrays are going to have contiguous set of 

locations. 

So, as I said, each element can be thought of as a variable. Just like individual variables, 

they start out to uninitialized. One nice thing is once you have declared an array; just like 

in variables, you can assign values to these variables. So, we saw that, we can have left-

hand side variable name, right-hand side value or expressions for variables. The same 



thing applies for arrays. So, in the left-hand side, you have an individual variable – 

marks of 3; and on the right-hand side, we have a value 36. So, if you do this in your 

program, then the value will go to 36. So, at this point, you know the contents of the 

location marks of 3. As before, we can use ampersand to get the location of the memory. 

So, for instance, if I want let us say address of marks of 2, then I do ampersand of marks 

of 2; and ampersand of marks of 2 would give me 2733 as the value; ampersand of marks 

of 1 would give me 2732 as the value, and so on. So, the addresses are going from 2731 

down to 2737 in increasing values. So, they are contiguous and they are increasing from 

0 to array index 6. 

(Refer Slide Time: 10:31) 

 

So, let us revisit the example that we did earlier. So, we have float temp of 365; say we 

have an array of type float and 365 values. At this point, we do not care about where it is 

getting laid out in the memory, because that is something that, your run time system 

should do. So, as a programmer, we do not care about where it is in the memory location; 

just like for variables, we do not care where they are in the memory. Then this is 

something that, I did not draw attention to earlier. Now, let us see what it is doing. If it is 

an individual variable, we saw that scanf takes the format and the address of a variable; 

the same thing is happening here. We have the format here and we have the address of a 

variable; only that, the variable is not an individual variable; it is actually an array 

location. So, temp of i is temp of 0, temp of 1, temp of 2, so on till temp of 364. And 

when finally, when you look at this loop, it runs from 0 to 364; so it actually runs 365 



times. So, your array is indexed from 0 to 364; the loop also runs from 0 to 364. We are 

actually scanning 365 elements. And in this loop, we are adding all the 365 elements into 

sum and you average at the end of it. So, it is as simple as that. So, from arrays, we get 

contiguous locations and we have a same data type; but we have many elements of the 

same data type one after the other. 

(Refer Slide Time: 12:07) 

 

There are various ways to initialize arrays; you can do something like this. Let us say I 

want marks of 7 students and I could have it as int marks of 7 and read it from the user. 

Or, sometimes I know what these values are. So, I could initialize it right away; I could 

do this. So, int marks of 7. So, I am declaring marks to be an integer array of 7 elements. 

And you can specify the list of values on the right-hand side using a curly braces. So, in 

this case, marks of 0 would be 22; marks of 2 would be 75; marks of 6 would be 45 and 

so on. So, the locations on the left side can be seen as 0 to 7; and the values can be seen 

from left to right. So, you get a one-to-one mapping from left side to the right side. So, 

when you do this, let us say these are locations 0 to 6 and the values are 22 for 0, 15 for 

1, and so on till 45 for marks of 6. It is not just that you can initialize and leave it at that; 

you can change the values just like you do for other variables. So, you can do something 

of this effect. Even though you have initialized, mark of 3 to 56, we can do some 

assignment like this – marks of 3 equal to 36; and that will change the value to 36. So, 

we saw that, the value changed from 56 to 36. 



(Refer Slide Time: 13:35) 

 

So, there are a few fine points that you have to remember. Array indices always start at 0 

in C. If you come from other programming languages, some languages start at 1. So, be 

aware of this. This is a common mistake and lot of people get trapped in this thing that, 

the indices start at 1 and not at 0. So, in C, they do start at 0. And when you do marks of 

7, marks of 0 to 6 – all are valid; marks of 7 is invalid as well as marks of minus 1 or 

minus 2 and so on. So, you will never have indices, which are negative; nor, you will 

have an index, which is greater than and equal to the declaration that you had. So, for 

example, in the float that you showed earlier, so we have 365. So, temp of 365 would be 

invalid, because we have only temp of 0 to temp of 364. 



(Refer Slide Time: 14:35) 

 

So, I want to talk about another small example, which is along the lines of finding the 

hottest day. So, I have read 365 temperatures into an array called temp; but I want to find 

out the maximum temperature or which day was the hottest day. So, what I want the user 

to print is print the day in which the day was the hottest as well as a temperature of that 

day. So, as before, we have float temp of 365; and I have two arrays – two variables 

namely, hottest day and i. I am going to use hottest day to find out which day is the 

hottest. And I am going to use i to iterate over all the locations. So, initially, what I am 

going to assume is day 0 is the hottest. So, let us say this is January 1; I assume that, 

January 1 is the hottest and it is day 0. So, temp of hottest day, which is temp of 0 goes 

to max. 

Now, I run a loop from 1 to 364. So, this goes from January 2 till December 31. And 

what I am going to do is I am going to see if the current temperature is less than the… 

The current maximum temperature that I have in record is less than temperature of day i. 

So, if it is less, then max is that I have is not the actual max; some other day became 

hotter. So, I have to update it. So, I have hottest day equal to i updated. I not only update 

the day in which the temperature was very high; I also record the actual temperature, 

because that is what you are actually tracking. So, what this loop really does is this. So, 

you go from day 1 to day 364. So, we start at day 0; we go from day 1 to day 364. And if 

some other day becomes hotter, we update it and we move forward. 



And since I have to find out the hottest day in the year, I have to go all the way till 364 

days or day 0 to day 364 – 365 days. At the end of it, hottest day will have the index of 

the day and max will contain the actual temperature. So, I can print that, the hottest day 

was day number hottest day with temperature max. So, this is a very simple loop. I did 

not show code for reading in temperature of the 365 days, but we only see the code for 

finding out the maximum. So, this is the very simple and common example of how 

arrays are used. I want to find out the maximum. So, it could be marks of 100 students or 

so. And I want to find out which student got the highest mark. So, I may have to just 

iterate over this and find out the largest value. So, we start with day 0 being the hottest. 

And if i-th day is hotter than the current record, update it. 

(Refer Slide Time: 17:45) 

 

There are also multidimensional arrays that are possible; so not everything in practical 

uses 1-dimensional. So, even though I have… So, I have things like matrices and so on. 

Naturally, they are multidimensional or in this, matrices are actually 2-dimensional; you 

could also have 3-dimensional structures and so on. So, C gives you flexibility to have 

arrays of multiple dimensions. So, for instance, let us see something of this kind. If I 

have a declaration int A square bracket 4 square bracket 3; it means that, we have four 

rows numbered 0, 1, 2, 3. So, that comes from this. And number of columns being 3 

numbered from 0 to 2. So, we have four rows by three columns. 



I can also have something, which is 3-dimensional. So, in this case, I have a floating 

point array called B. And there are three dimensions to it. So, you can think of it as x, y 

and z dimension. So, in the x dimension, there is 2; you can think of it as two planes: 

plane 0, and plane 1. In each plane, I have four rows and three columns. That is what you 

see here. So, in each plane, I have four rows and three columns. So, this comes in very 

handy for handling matrices and graphics and so on. We will look at these examples in a 

little later. In a little while, we will see examples of multidimensional arrays. So, at the 

end of this module, what we have is basic notion of arrays; how we can use the arrays, 

how we can index them, and what happens inside memory. So, in the next two modules, 

we will see more details about arrays. 


