
Introduction to Structured Programming 

Prof. Shankar Balachandran 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Lecture – 61 

 

Welcome to the very last video for this course for this Mooc. So, we have stuck with the 

course for. So, long and. So, this is the place, when I do not want to teach something 

completely new. So, this is something that you have done, you have already done the 

programming, but when you write large piece of software, you may have to do a few 

things to be just careful and. So, that it becomes usable even later. 

So, one thing that happens with the software is that, lot of people start contributing to 

code and your code that you wrote to be able to read by others and may be they want to 

change it later or you may even go and changed your own code to do a few other things 

later and so, on. So, you need to follow a few principles to do this. And one major thing 

that you have to do is, take a problem and divide that into smaller sub problems. So, that 

you can solve each of the sub problems separately and put them in different places. 

So, it may be you have not seen this or you have not done it so, far, because you are 

writing smaller program so, far. But, this can really become a problem if you write lots of 

code. So, to motivate this whole thing, I am going to give a small programming 

assignment to you, it is not a very hard assignment. So, I want you to go and write a 

program to print these figures. 

(Refer Slide Time: 01:30) 

 



So, there is a hexagon looking thing at the left and then, there is something like a cup, 

there is a stop sign and we will call this the hat. So, let us say this will call this the egg, 

the cup, the stop sign and the hat. Let us say, you want to draw these things. So, I am 

asking you to write a program which you will draw, you could do something very easy. 

So, in the first line draw dashes, in the second line draw this forward slash, give some 

space, draw a backward slash, you can do a lots of things. 

So, let us look at the very first crack at this problem. The first version is an unstructured 

program, we will create an empty program and the main function. We will just copy the 

expected output, but surround each line with printf and run it to verify the output, we can 

do that very well. 

(Refer Slide Time: 02:20) 

 

So, your program would looks something like this, int main void, printf you have serious 

of printf, in each one you can see what you are trying to print. So, the only thing that is 

slightly different then what we will see in the output is for every back slash, we have to 

use this escape character called back slash itself. So, every back slash is actually 

supported by another back slash. The other thing that is missing is the serious of new 

lines that I have not explicitly added, but otherwise your program would looks something 

like this. 

So, this is what I will call an unstructured program. So, you have not put too much 

thought into it, you are asked to print something like this, you just write a serious of 

printf statements and this will print some. It will print what do you want, but it is not a 



very nice thing to do. 

(Refer Slide Time: 03:08) 

 

So, the first thing that we do in any engineering step is take a problem and divided that 

into sub problems. The same thing applies to writing software. Can I take this problem 

and divided that into sub problems. So, the main thing that comes with this is what is 

called decomposition. Can you take the problem and decompose that into smaller sub 

problems and identify, if there is any structure to the problem itself. So, let us go and 

look at this. 

(Refer Slide Time: 03:34) 

 

So, there is some a structure. So, the first figure will call that the egg, the second figure 



will call that tea cup, the third figure is will call that the stop sign and the fourth figure 

will call it a hat. So, now I can think of this problem as drawn an egg, draw tea cup, draw 

a stop sign, draw a hat. That is slightly better than draw some line and draw some other 

line and draw some other line and so, on. So, this is slightly better. 

(Refer Slide Time: 04:05) 

. 

Let us see, how this might look like. In your main program, you will have four function 

calls draw egg, draw tea cup, draw stop sign, draw hat and you would have to write four 

functions for each one of them egg, tea cup, stop and hat. So, this is something that you 

can do and it is something that you can write at this level anyway. 

(Refer Slide Time: 04:25) 

 



So, you have these four things. So, main depends on the function would depend on the 

function egg, would depend on the function tea cup, stop sign and hat. So, that is another 

way to write the program, but this is still not the best thing. 

(Refer Slide Time: 04:40) 

 

So, let us go and look at what is happening. Your main program becomes much simpler, 

the task that you doing in main is I have to do these four tasks in this order, that is all you 

care about. But, you do not care about how exactly egg is drawn, how tea cup is drawn 

and so, on, because you have delegated this to a function. Remember, when we did 

functions I talked about delegations and we did exactly that now. So, when you call this 

function egg, this function egg has all the printf statements. 

Of course, the new lines are missing I did intentionally added, because you can see the 

structure of the output here clearly. So, series of printf statements, this is slightly better. 

What you have is from the main program the intend is clear, you want to do draw egg, 

draw tea cup, draw stop sign and draw hat, but the functions are themselves still ugly, 

you have only the serious of printf statements. So, this is one level of decomposition. 

From, something which is just a sequence of printf statements, you have four functions 

calls, the main program is clear or the main method is clear, but the internal functions are 

still a bit ugly. So, now let us see whether we can decompose the problem in little further. 



(Refer Side Time: 05:50) 

 

So, this is actually just finishes the program with all these four egg, tea cup, stop sign 

and hat. Let us see, if there is something better that we can do about this whole thing, is 

there some other structures to drawing this or should I be drawing or writing a series of 

printf statement for each one of these functions. So, let us look at the egg to begin with. 

(Refer Slide Time: 06:10) 

 

So, the egg there is something in the top half and something in the bottom half. You 

cannot really draw the top half with the bottom half, code or anything like that, there is 

no reuse that you can do. So, the top half has to be drawn and the bottom half has to be 

down separately. So, this will require a printf of a line followed by forward slash and the 

back slash and forward by another line with the forward slash back slash and in this, it 



would be a reverse. 

So, you cannot reuse anything. So, let us assume that there is a function which can draw 

the top of the egg, there is another function that can draw the bottom half of the egg. So, 

we will call those functions egg top and egg bottom, that is the way we have identify 

this. Now, let us go and look at this next one which is supposed to be for drawing the 

cup. If you notice, cup has something which is similar to the bottom of the egg, but there 

is something else also. The saucer here is just a line we need something to do there. 

(Refer Slide Time: 07:18) 

 

So, if you want that. So, the tea cup actually can reuse the egg bottom, drawing the egg 

bottom. So, if you draw the egg bottom and if you draw a line with the pluses on both 

ends that is actually. So, if you know how to draw bottom of an egg, you can actually 

draw a tea cup. Only thing you have to do is, draw the bottom of the egg and draw a line 

underneath. So, tea cup requires, you to know how to draw the bottom of the egg and 

bottom of the line. 

If you have already written that as the function, you can call the same function once 

more from tea cup, there is no harm. Now, let us go and look at the stop sign, the stop 

sign is also interesting. 



(Refer Slide Time: 08:00) 

 

Because, the top half of the stop sign looks like the top of the egg. The bottom top of the 

stop sign looks like the bottom half the egg and also the top of the cup and that is a line 

in between which has the stop. So, for drawing a stop sign if you draw an egg top and if 

you print this line and if you draw egg bottom, you have a stop sign. So, we will call this 

line, the stop line. So, this is called just a line, this is called a stop line and for drawing a 

stop sign you need egg top, then you need to draw stop line and we need to do egg 

bottom, you have that. 

Then, let us look at the last one which I called the hat. The hat seems to be the top of the 

egg and the bottom of the tea cup. So, I already wrote those two things, let us I have 

functions to do those, I have top of the egg drawn and bottom of the tea cup. So, I have 

these two. So, I do not have to rewrite code anymore. 



(Refer Slide Time: 09:01) 

 

So, we have these two and I already have the methods. So, now if you look at this whole 

structure, main program requires you to know how to draw an egg, tea cup, stop sign and 

hat. Because, those are the four functions calls we are doing. Egg in term will call egg 

top and egg bottom in that order, tea cup will call egg bottom and line in that order, stop 

sign will call egg top, stop line and egg bottom in that order and hat will call egg top and 

line in that order. 

So, for writing egg all you have to do is write egg top and egg bottom and make two 

function calls, but somebody ask to still write egg top and egg bottom and line and stop 

line and so, on. So, now there are two questions one can ask. What are the methods we 

should be defining and what is a good order in which we have to implement and test this 

methods? So, clearly main depends on these four and these four depend on these four, it 

dictates that we have to know how to implement these four. 

Without building this, there is no point in building these and without building these, you 

cannot build your overall diagram which is on the left side, this egg followed by cup 

followed by stop followed by hat, you cannot draw that unless you have drawn, you 

know how to draw these four structures. 



(Refer Slide Time: 10:21) 

 

So, we will start each one of them. So, main requires of call to egg, tea cup, stop sign and 

hat. This is just like what we had in the version 2 of the program. Only that we have a 

version which draws top of the egg and we draw version which draws bottom of the egg. 

If you have these two, I am ready to draw the egg itself. What does the egg need? You 

need top of the egg, you need bottom of the egg and we need to draw the egg by calling 

egg top and egg bottom. 

So, forget this printf for a while now. It is actually a mistake it should have a back slash n 

there. So, printf back slash n. It will draw a line after the egg is drawn. So, if you look at 

the sequence, main calls egg, egg calls egg top which will draw this, then it calls egg 

bottom which will draw this and it is supposed to be printing a new line. Again in these 

cases, the new lines are intentionally left out. So, that it does not clatter the program 

write now. 



(Refer Slide Time: 11:17) 

 

Then, let us looked at how to draw a line. So, you do a plus followed by dashes followed 

by a plus, this is for our saucer. To draw a tea cup, we need the egg bottom on the line 

and. So, there will give as the cup and saucer. To draw a stop sign, we need the egg top 

and egg bottom, but we need a stop line in between. So, this top line is needed only for 

the stop sign, it is not needed anywhere else. So, instead of calling a function, I could just 

put the printf statement here itself, because it is not used by more than one function. 

So, stop sign is required, this top line is required only for the stop sign, nothing else. Hat, 

you do not need do anything new at all, egg top you have already drawn, you know how 

to draw a line. So, you do these. So, now you all look at the structure, the program is 

much cleaner. You have reused the code that we have written for egg top and egg bottom 

in several places. So, egg top is used in drawing an egg and hat, egg bottom is useful in 

drawing the egg and the tea cup and egg top and egg bottom are useful in stop sign. 

So, now this is the much nicely structure and nicely decomposed program. So, for instant 

if you make one small mistake in the space in the egg top, if you cut and pasted these to 

this structure multiple times, you have to go and change this multiple times in your 

program. But, if there is a small mistake in egg top, all you have to do is fix it here, 

automatically all the functions which call it will have the fixed versions. 



(Refer Slide Time: 12:49) 

 

So, this is the setup. So, even though I said this is what you should do. There is some 

more things that you have to do. So, first thing is taking a problem and dividing that in to 

sub problems and writing functions for each one of them, we have already done that. We 

need to do something more, the thing is we have the. So, called basic shapes. So, I am 

going to call egg top, egg bottom and line, I am going to call these things as basic shapes. 

Using basic shapes, you build the shapes and using the shapes, you draw a complete 

picture, this is the complete picture. So, these are basic shapes, these are shapes and this 

is the complete picture and how to we do that. So, I want to be able to separate the 

concern of each one of them. Drawing the basic shapes and being able to do something 

there is difference from being able to draw their shapes and being able to draw shapes is 

different from being able to draw the picture. 

So, I am going to do this in a bottom of fashion. So, you go and look at this, we will go 

and develop this in a bottom fashion. We will try and write these things first, methods for 

these things and then write methods for these things and then this, but we are also going 

to do something more which we have not seen. So, far. 



(Refer Slide Time: 14:08) 

 

So, the first thing we are going to do is. So, for we have been using the. So, called header 

file, we are not really developed our own header files. So, we use stdio dot h and string 

dot h and so, on. So, you need to separate the concerns, this is the terms people used in 

Software Engineering separate concerns. So, one you are mixing the program, what the 

program is supposed to be doing with what the interface of the functions are. 

So, the implementation and the declaration are all in the same file. So, far, but we can 

separate these concerns. So, use the code dot h or give a file name dot h to do all the 

prototypes and so, on and write file name dot c to write the program. So, the 

implementation usually goes into dot c files and the declaration is going to dot h files. 

(Refer Slide Time: 15:01) 

 



Let us say, we adopt that and we are going to do something with the header files. So, for 

every problem there is some solving the problem itself and all the functions or other 

things that you need for it. So, we will see how to do that. 

(Refer Slide Time: 15:10) 

 

So, the header files usually have this format. So, there is hash if not def of code name, 

then define code name, put all your structures and prototypes and so, on, end if. So, let us 

not very about this if not def defined in end if, but all the declarations go with in these 

three structures, hash if not def, hash define, hash end if. So, what it tells you is, if 

something called code name is not defined, define it now, define all these things and end 

it. 

So, let see how this look likes for basic shapes. I am creating a file called basic shapes 

dot h, this takes care of only the declarations for all the functions which have for basic 

shapes, egg top, egg bottom and line are three functions. So, add the declarations for 

these three functions in a file called basic shapes and. So, whenever I use a file name, I 

will use the same thing for the if not def. If not def basic shapes h define basic shape h. 

If this has been not defined. So, for, define this variable now, define all these function 

prototypes, end it. So, this is the declaration for the basic shapes. 



(Refer Slide Time: 16:24) 

 

The description. So, will come later. So, if you want to use the dot h file, you do hash 

include basic shape dot. This is like hash include stdio dot h. So, put your header file in 

the same folder as your C files and use hash include, for example, in stdilb. So, I will say 

you how to write basic shapes dot c. 

(Refer Slide Time: 16:42) 

 

So, basic shapes dot c will be a C program, this has the implementation. This include 

stdio and also include basic shape and it has the function descriptions for egg top, egg 

bottom and line. So, basic shapes dot h and basic shapes dot c, you have something that 

can draw basic shapes and nothing else. 



(Refer Slide Time: 17:07) 

 

Now, you want to be able to draw shapes with it. So, let us move up. 

(Refer Slide Time: 17:13) 

 

I am going to write a file called shapes dot h, which has all the things required for 

drawing the shapes. So, the declarations for drawing the shapes and this is the 

description of those functions. 



(Refer Slide Time: 17:23) 

 

So, shapes dot c has shapes dot h, because it needs those descriptions and how is the egg 

implemented. The implementation is in this file, egg top, egg bottom and printf, tea cup 

egg bottom, line and printf and so, on. 

(Refer Slide Time: 17:43) 

 

This is what you need for drawing the shapes. So, now we have four files basic shapes 

dot h, basic shapes dot c, shapes dot h and shapes dot c. So, shapes dot h has only the 

declarations, it also includes basic shape dot h and so, on. So, now we have four files, 

you cannot compile just one file now, you have to create what is called a project. I will 

show you, how the project is done in the demo. 



(Refer Slide Time: 18:10) 

 

Finally, the top most thing I am going to call the draw figures dot c, draw figures needs 

shapes dot h and. So, now, egg, tea cup, stop sign, hat are all provided by shapes dot c. 

Shapes dot c in turn depends on basics shapes dot c. So, this is the overall structure, we 

have five files, draw figures, basic shapes dot h in c and shapes h in c. So, I will already 

return this here. So, you can see basic shapes dot h, it has a declarations, basic shapes dot 

c which has the description, shapes dot h which has the declarations, shapes dot c which 

has the description and draw shapes dot c which has the description for the main 

program. 

I have included all of these into our project called draw shapes. So, you can do that by 

saving file new project. So, I did file new project I created a file by name, draw shapes. I 

included these five files into the project. Now, I can compile the project and what it does 

is it takes all these files and compile them together and when I run it, it actually runs the 

main program. So, if you noticed the individual once do not have main routines. 

We do not have main routines in any of these. The main routine is only in this one. So, 

for drawing shapes dot c and basic shapes dot c and shapes dot c, they are also compiled 

and they are compiled along with draw shapes dot c, you can see the result of the print 

out here. So, you can see the egg, the tea cup, the stop sign and this that came from 

actually having taken the problem and dividing that into sub problems, identifying the 

structure which is common and being able to reuse and so, on. 

So, for whatever reason if I two cups tomorrow, I can actually call the cups twice. So, I 



can call tea cup and a tea cup, it will draw two tea cups one below the other. So, this idea 

of being able to taking a problem, dividing that into sub problems is a necessary skill. 

You probably did that with functions itself, but separating the concerns of 

implementation from the. So, called interface or just the declaration is the another thing. 

So, once you have something if you divide that into multiple files, you can quickly go 

and see which file has the basic issue and which file has the problem and so, on. So, for 

example, tomorrow I may not want to draw egg and stop sign and so, on, but I want to 

draw two cups and three cups, I can write a different program which will take the cups 

and draw them explicitly. So, this notion of dividing the problem is decomposition and 

organizing them into multiple header files in C files is a very necessary skill, when you 

build large and large pieces of software. 

(Refer Slide Time: 20:58) 

 

So, I want to end this course with one small piece of advice. So, there are lots of things 

that we did in the course, but we never wrote or explicitly use libraries for many of them. 

C comes with a lot of libraries. These are standard libraries that come with any standard 

C package. So, your compiler package these things for you, thinks to operate on the 

strings, things to operate on characters. For example, you take a lower character and 

convert that to upper case, you can check whether a character is lower case or upper 

case, things like that. 

There are math libraries included from math dot h, trigonometric functions, floor, 

absolute value, power and things like that are all available from math libraries. It is not 



just that these are the functions that are there. Even some algorithmic things are 

available. For example, from stdlib you learn binary search, you do not have to write 

library search yourself, you can call the binary search function available from stdlib. 

So, you learnt how to do various sorting algorithms. So, qsort for instance is an 

algorithm which has something called quick sort. So, you can call qsort or an array of 

integers for instants. So, you have to learn how to do it though, I am simplifying a few 

things here, but for there are sorting, searching functions, mathematical libraries and the 

other things that are already available out there. If it is available as a part of your 

package, learn how to use it. 

So, at some point all we have to do is make appropriate function calls, include 

appropriate header files, make appropriate function calls and compile with appropriate 

flux. So, I am simplifying a lot of things, but learn how to use the basic libraries and not 

write things from scratch, every time you write a program. So, this bring to us to the end 

of this module and. In fact, to the end of this course and I hope you enjoyed the course as 

much as we enjoyed creating it and this is been probably a rough and tuff, 9 or 10 weeks 

that you have been through with lots of programming assignments and assessments and 

so, on. 

But, we hope that this course helped you, in some way of the other to learn either from 

scratch or at least be able to if we have already done C programming, at least cleared a 

lot of concepts for you and taught a few new things like data structures and algorithms 

and so, on. So, for doing this course we took help from quite of you people. So, of 

course, we three where the faces that you saw, but there is a big team that was behind it. 

We have 10 TAS who are all behind this. So, they were actually responding to you on the 

forums. There is a team from Google which created the platform and there is also this 

local team, the NPTEL team in charge of video recording scheduling and. So, many other 

things. So, there are probably 30 or 40 people who got involved in creating the contents 

for this course and delivering it you. So, I personally want to place on record that we 

three thank each and every one of them. 

So, we cannot possibly list all of them by name, but I want to thank all of them to make 

this course, the success it is now. And I am hoping that you guys will tune in later for 

other courses that NPTEL has to offer. So, all the best for your exams and I hope to see 

you in some other course at a later point of time. 



Bye bye. 


