
Programming, Data Structures and Algorithms 

Prof. Shankar Balachandran 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Lecture – 06 

Conditional Statements 

Selection Statements 

If statement, If then else, Cascading if 

Switch statement; Correct and incorrect usages 

 

We are in lecture 2, we will now look at Conditional Statements. So, as I explained 

earlier conditional statements are of two kinds, they are of the, if then else kind or the 

switch case kind. 

(Refer Slide Time: 00:26) 

 

So, will start with the conditional statements, these are also called selection statements 

for the reason that you actually have an expression, based on the evaluation of the 

expression, you actually select what should be done. So, for example, there is the single 

selection statement. So, let us see this example, if attendance is less than 75 grade equals 

w, so what this is really doing is this, if attendance is less than 75, if the class attendance 

is less than 75 percentage, grade is withdrawn. That is what this statement is supposed to 

be. 

So, if attendance is less than 75 grade equals w. So, this is does not have any other 

choices, there is no else here. So, this is a single selection statement, so you choose to 



assign w to grade or not depending on this expression attendances less that 75. If 

attendances is actually greater than or equal to 75, this assignment will not be chosen for 

execution, which means it will not be executed, so this is a single selection statement. 

A double selection statement on the other hand has two things that you could do, you 

could have, if marks less than 40 passed equals 0.. else passed equals 1. So, you have 

two statements passed equals 0 and passed equals 1 and one of them will be executed 

depending on the choice of marks. So, if marks is less than 40 passed equals 0 will be 

executed; otherwise passed equals one will be executed. So, there is semicolon missing 

here that has to be included. And otherwise it can be a switch statement, where it is 

multiple selection. So, you have single selection, you have double selection or you have 

multiple selection. So, we will first see this single selection and double selection and 

query details before we go into the switch. 

(Refer Slide Time: 02:21) 

 

Let us look at the basic structure of a if statement. So, the if statement is start with these 

keyword called if followed by an expression, followed by a block called statement 1, 

optionally it can also have the else clause and a block for the else clause called statement 

2. So, the meaning of this is, if expression evaluates to true, statement 1 will be executed. 

So, the statement 1 is, remember it is a compound statement, it is not a single statement 

stmt 1 is suppose to be a compound statement. 



So, compound statement 1 will be executed, if the expression evaluated false, this 

statement 2 will be executed. So, stmt 1 and stmt 2 are usually blocks of code need not 

be just single line code, even though single line code is acceptable need not be single 

statement code. 

(Refer Slide Time: 03:14) 

 

So, the else part is completely optional and that is what we have, when we have this 

square bracket here. Square bracket is not part of the syntax, it is just to tell you that 

everything that comes with in square bracket is optional here. So, if there is no else part 

in the if statement, this becomes a single selection statement and if the expression 

evaluates to true statement 1 will be executed; otherwise, the statement would have no 

effect. 



(Refer Slide Time: 03:43) 

 

So, what it really does in terms of execution of programmers, let us say I do not have any 

of these selection statements, you have series of simple statements. If you start from, let 

us say line 1, you will do line 2, line 3 and so on up till line n, the last line in the program 

and exit. So, this is a sequential structure whereas, once you have selection statements, it 

could change the flow of the program. 

So, let us say there is some piece of code here in this blue dot here and you evaluate an 

expression, which is indicated by the diamond if the condition evaluates to true, you 

execute the block of statement in the true branch, and if the condition evaluates to false, 

you do not do anything and either way after executing this you come here or if the 

condition is false you come here. So, this branch that you have here over the two case 

will not happen if the expression evaluates to false and it will goes to the blue dot. 

So, this is the single selection statement, you choose to execute this true block or not 

depending on the expression here. Then, there is this other type which is double selection 

statement, you have a body of code here and after that evaluate an expression. So, this 

body of code could be scanning something from the user or some other piece of program 

that you have written before, you evaluate an expression. Now, there are two choices 

either true or false, if the condition evaluation to true you executed the right block, if the 

condition evaluation to false you executed the left block. And once you execute one of 



these blocks, you come and execute these blue block of code which is after the if 

statement. So, this is the general structure of if than else. 

(Refer Slide Time: 05:34) 

 

So, let us look at several examples to now. So, starting with the example 1 where there is 

no else clause. So, let us say the problem that I want you to solve is given a number find 

out if it is a multiple of 3. So, I give you number x and you have to find out whether it is 

multiple of 3 if it is multiple of 3, print that it so on the screen. So, the equivalent code 

segment would be if x percentage 3 equal to equal to 0 printf x is the multiple of 3. 

So, this printf is a simple statement here and this if is a compound statement, which 

contains only one selection. If the condition is true, it will print this on the screen, if the 

condition is false it will not do anything. So, remember this percentage as the modulo 

operator that are introduced in lecture 1. This percentage 3 means, we are looking at x 

mod 3 and this is something that is new here, which is this equal to equal to. 

So, this is equal to equal to is essentially an operator in C which checks for equality, a 

single equal to symbol is useful for expression evaluation. So, we did this in the previous 

lecture, so p 2 equals something, p 1 something and so on. So, evaluate something on the 

right side and assign it to the left side, but if you have two equal to symbols right after 

the other, that is checking for equality. So, the meaning of this expression is, if x modulo 

3 is equal to 0, then do this, else there is no else statement here. So, if this condition is 

true, the statement will be executed. 



(Refer Slide Time: 07:22) 

 

Let us move to another example, where there is no else clause, but it is a compound 

block. So, if the given number is multiple of 3, let us say you want ask the user for 

another input. So, if x percentage 3 is 0 you not only want to tell the user that x is the 

multiple of 3, you also want user to enter another number and you should able to scan it. 

So, if x percentage 3 equal to equal to 0, so then block is between this and this brace. 

So, printf x is the multiple of 3, please enter another number. So, you are prompting the 

user to enter another number, since the user is expected to enter another number, you 

have to scan it, scan of percentage d percent x. So, this is the collection of two simple 

statements that goes into a code block and if this condition is true, you have a logical 

collection of statements here are a logical sequence, we not only want to print it, we also 

want to user to enter another input. So, you need a brace because there are two simple 

statements inside. 



(Refer Slide Time: 08:30) 

 

So, there is a little bit of warning that I want to give here, let us say I want to solve the 

same problem, but I left out the braces that is what you seeing here, if x percentage 3 is 0 

then I have left out the brace here and here. So, from the view of the compiler, the if 

statement x percentage 3 equals to 0 printf. That means, instead of becoming a 

compound statement with two lines of simple statements, it instead becomes one 

compound statement of if only this printf is evaluated if this condition is true and this 

scanf statement is executed unconditionally. 

So, what I mean by that is this printf will happen only if x percentage 3 is actually 0 or if 

x is a multiple of 3 and this scanf will happen no matter x is modulo 3, x is modulo 3 is 0 

or not. So, scanf statement is actually outside the if condition, even though it is formatted 

in such a way that is printf and scanf seems to be inside the if block, the compiler does 

not care about the spacing that you given here, this scanf is actually is outside the if 

condition here. 

So, the result would be the user will have to enter a number, even if x is not a multiple of 

3 and that is not what we want, we wanted the user to enter a new number only if x is a 

multiple of 3; otherwise, we want to do something else with that. 



(Refer Slide Time: 10:05) 

 

So, the simple thumb rules use the left and right brace to enclose if and else blocks. And 

I typically use it, even if there is only one single statement inside, this will save you 

several headaches the program can becomes slightly unreadable, because you have two 

many of this left and right braces. However, it will cause you lesser headaches. So, that is 

why if you go back to my lecture 1, you will see that is if then else clause that I had, even 

though there were only single statement inside always enclosed them within braces. 

(Refer Slide Time: 10:37) 

 



Let us look at another example with an else clause here. So, if the given number is some 

multiple of 3 ask for another number; otherwise, let us say I want to thank the user. So, if 

x percentage 3 equal to 0, then you print this on the screen and you scan the another 

input. So, this is one logical condition, now you have multiple selection though or double 

selection else. So, if this is not true, you printf thank you, so this is the structure for else 

and we have seen this before in our lecture 1 also. 

So, one word of caution here, so just because you are scanning here it does not mean that 

the user would enter number, which is not a multiple of 3, the user may still enter a 

number which is multiple of 3, we are not checking here. So, I want to show this 

program just show the structure of, if then else. So, at the end here x could still be a 

multiple of 3. So, you need the mechanism by which you repeatedly scan the input here, 

till the user input something else, if that is what you want. In this case we are not 

checking for that, I just want to show you the structure of if then else. 

(Refer Slide Time: 11:45) 

 

So, there are two other useful collection of if statements. So, one that you see on the left 

side is what is called a cascading if else and one that you see on the right side is a case of 

what is called nested if else. So, in the cascading if else case what you have is, if 

expression 1 evaluates to true, you execute the block of statements. In the else clause you 

actually evaluate another expression, else if expression 2 evaluate you execute another 

blob of code, else if expression 3 execute another blob of code and so on. 



You can have a series of this else if statements, ending with a final else clause where 

execute another blob of code. So, this is called cascading if else, we will see a quick 

example later, the other cases nested if else. So, we have if expression 1 do a blob of 

code, if expression 2 do a blob of code and so on. So, what happen here is, this blob of 

code or this blob or this blob only one of them will execute depending on the conditions 

for expression 1, expression 2 and so on. 

So, if expression evaluates to true, this blob of code will execute and none of this will get 

executed. If expression 1 is false and if expression two is true only this blob will get 

executed and so on. So, in this cascading if else case, there is only one blob which will 

really execute not all of them. However, if both expression 1 and expression 2 are true, 

both this blob and that blob will be executed here. 

So, what is really happening is, if you notice if expression 1, there is a curly brace here 

and this curly brace here, between these two curly braces is iif expression 2, which 

means this is the compound statement, which is within another compound statement. So, 

this is completely contained within the evaluation of this expression. So, therefore, this 

blob of code as well as this statement will be executed if expression 1 is true. 

(Refer Slide Time: 13:46) 

 

So, let us see an example of cascading if, let us say I am grading your course and let us 

say this is my grading policy, if you get below 50 marks in the exam you get a D grade, 

if you get between 50 and 59 you get C, if you get 60 to 75 you get B and 75 and above 



will be A. Let us say this is my grading policy for the course, then I have the integer 

marks and I have the character grade. So, marks is, something that you are going to enter 

and grade is something that I am going to assign from the program. 

So, you see this structure here, if marks is less than or equal to 50 then grade is D. So, if 

it is less than or equal to 50 I assign the grade D, else if marks is less than or equal to 59 

then grade is C, else if marks is less than or equal to 75 grade is B else grade is A. So, 

what is happening is, we are seeing only one of these will be true, if you enter the mark 

here only one of these things will be true and only one blob of code will execute, either 

you will get grade equal to D or C or B or A, you can never have a case were more than 

one assignment happens. 

So, if my mark is 40 then this if condition is true, then the grade would be D, if the mark 

is 65 then if this expression will evaluate false, this expression will also evaluate to false, 

this expression will evaluate to true, you will get grade B. So, this is the structure of 

cascading if and these are simple statements; therefore, I have not put braces, but putting 

braces is always recommended. So, there should have been brace here and brace here, 

there should have been brace here and brace here and so on. 

(Refer Slide Time: 15:30) 

 

And nested if, we saw this segment earlier, if A is greater than B and if A is greater than 

C printf A is the largest else pritntf C is the largest. And there is some other blob of code 

that comes as else, so I am just showing one segment of the maximum of three numbers. 



So, if you are in doubt go back to the lecture 1 and the look at the code, we already used 

the nested if statement inside the code there. 

(Refer Slide Time: 15:56) 

 

You should be a bit cautious about the use of the else clause. So, let us say I did this, if 

marks is greater than 40 and within that if true condition, I have if mark is greater than 

75 printf you got distinction, else printf sorry you repeat the course, let us say this is 

what we have. So, what we really want to do is, if somebody got less than 40 we want to 

tell them that they have to repeat the course. But, let us see what happens here. 

So, if we start with this if statement, there is an expression here marks greater than 75 

printf you got distinction, if marks is less than 75, even if it is greater than 40 what 

happens is, this else clause attaches itself with this if clause, and not with this if clause. 

So, else always attaches itself to the nearest statement, nearest if statement, without the 

else clause. 

So, because of that what happens is, let us say my mark was actually 65 it is not greater 

than 75. So, I do not get distinction, however I will be asked to repeat the course which is 

not what we intended. What we really intended is this, if marks is greater than 40 and if 

the marks is greater than 75, printf you got distinction and the else should have been for 

this if condition. So, since else always attaches itself the nearest if, not having this brace 

here even though it is one single statement here, not having this brace here would result 

in something that you do not desire to have. 



So, be cautious about this that is why I said, whenever you have an if condition, if you 

automatically put braces and for else also if you automatically put braces none of these 

confusions will occur. So, go back to my basic thumb rule, if true block should have 

braces, else false block should have ((Refer Time: 17:49)) block should have braces by 

default and that will help in getting rid of all this headaches. 

(Refer Slide Time: 18:01) 

 

So, finally, let us look at the switch statement which is a multi way decision statement. 

So, in a multi way decision statement it is not a single decision or double decision, it 

could be more than two decisions. The basic syntax is you have this key word switch 

followed by an expression, which is within parenthesis and you have braces. So, again 

this is a block of code. So, switch is a compound statement and it can contain several 

cases. 

So, you have case constant expression statements, case constant expression statements 

and so on, you can have several cases and you can also have an optional default clause 

and an optional default. So, essentially what happens is, if we have multiple choices 

depending on the value of expression, whichever evaluates to true those statements will 

get executed. If none of these expressions evaluate to true, then the default clause will 

kick in and this set of statements will get executed. So, let us see examples. 



(Refer Slide Time: 18:58) 

 

So, let us say I have a character c and I read this character from the user, if the character 

is one of R, B and Y, I want to print something on this screen. So, if the user input capital 

R as an input I want to printf RED, if the user inputs B I want to printf BLUE, if the user 

inputs Y I want to printf YELLOW. So, if we look at this there is a switch c followed by 

braces followed by one or more case statements, the case then there is a constant 

expression here R, B or Y followed by a colon and there is a statement here, so that is the 

structure here. 

So, switch followed by expressions and there is something within the curly braces, you 

have case constant expression colon statements. So, you can see that this program is 

following that structure. Now, let us see what this constant expression is about, so this R, 

B and Y are not variables. So, when you put something within single quotes, you are 

actually looking for the character R or character B or character Y these are not variables 

R, B, Y. 

So, remember variables are those that can change value during the execution of the 

program, whereas these are constants they cannot change their values during the 

execution of the program. So, c is a variable, but within quotes R, within quotes B and 

within quotes Y are all character literals they cannot change their values. So, what you 

are looking for is, if c the character that you got from the user is one of these, then one of 

these statements should execute. 



The other thing that is new here is, this notion called break. So, what happens with this 

switch clause is, if R is true then it prints RED and you put the break. So, that you do not 

want any of this other printfs to execute or even the conditions to be checked. So, if you 

have printf RED and you print the RED and your now out of the switch clause if you put 

a break here, so this is something that is new. So, these are the choices that you put in R, 

B and Y and this break, breaks away from the switch statement to outside the switch 

statement. So, it starts executing a block of code after the switch statement. 

(Refer Slide Time: 21:18) 

 

So, let us look at another example where we want to handle both lower and upper case 

choices, maybe I as a user enter lower case or upper case, I want to handle both of them. 

So, this is also something that you can do with switch statements, so these two lines are 

as before, this is also as before the changes in these three lines here to here. So, if you 

look at case R, R case r the lower case r in both these cases we want to printf RED. 

So, I could write this as case capital R printf RED break, case small case R printf RED 

break and so on. But, we are executing the same set of statement for both these choices 

small case r and upper case R. So, therefore, if we have a series of choices for which you 

want to execute the same set of statements, we can just put them back to back and have 

this set of statement exactly. The same thing we have here for both upper case B and 

lower case b we want to print blue. 



So, therefore, this set of statements is common for both upper and lower case B, 

similarly this set of statements is true for both upper and lower case Y. So, one thing that 

you should also notice here is, the last statement here does not have a break. Because, 

any way it is the last condition you are checking automatically after checking these 

conditions if both these are true, it will execute this and come out of this switch, if these 

are false you will any way come out of this switch statement a break is not required in 

the last choice of case. 

(Refer Slide Time: 22:50) 

 

So, there are two things that we have to watch out in the switch cases. So, one warning is 

that variables cannot appear as choices. So, for example, let us say I put character char 1 

is r and character char 2 is B and case char 1, case char 2. So, remember the expression 

that you have here should be a constant expression whereas, you have use a variable 

called character 1. Even though character 1 is initialize to a literal r here you are putting 

a variable character 1 and that is not acceptable. So, c only allows constant expressions 

to be in the choices, you cannot put variables of any kind here. So, this is an incorrect 

program segment, so if you want go and try it writing this in a program, you will see that 

the compiler actually indicates an error. 



(Refer Slide Time: 23:38) 

 

There is another thing that you have to be warned about namely using ranges. So, for 

example, let us say I want to give these grades and for 0 to 49 I want to give D, for 50 to 

59 I want to give C, for 60 to 74 I want to give B and for 75 to 100 I want to give A. Let 

us say I want that, you cannot do something like this, case 0 dash 49 printf D or 50 dot 

dot 59 things like what you would do in when you write in paper, you may say 0 dot dot 

49 or 50 dash 59 and so on. Those things are not acceptable also you cannot provide a 

range of values in a constant expression, it has to be a single value for this case clause. 

So, whenever you have multiple values you have to have multiple cases. So, that is why 

we had this here, there were multiple values R and r for which we want to printf RED, 

we actually have multiple cases also specified explicitly. So, in summary we have a 

switch statement which has multiple cases and for each of these cases it executes the 

corresponding block, if there is a break it will break away from the switch statement, if 

there is no break will go and evaluate the next cases also. So, this is not a valid way to 

give grades you should use the if then else clauses here, I already showed you this in the 

earliest slide. So, with this we had the end of module. 


