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Lecture - 56 

After looking at the basic algorithms and techniques like the greedy techniques, today we 

come to advance techniques called dynamic programming. 
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Dynamic programming is an algorithm design method, it is used when the solution to a 

problem can be obtained by selecting a solution to some sub problems, this is very loose 

way of putting it. But, we will set of all the formal details in the lecture today. Most 

importantly the role of this slide is to you tell you that, dynamic programming techniques 

are very fundamental different from greedy algorithmic techniques. Often in the greedy 

algorithms there is this power of making a greedy choice, which we have seen in earlier 

lectures. And the greedy choice identifies a single recurrence sub problem to solve. 
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Let us look at the shortest path problem as an example, what you see is the layered graph 

it has 4 vertices S, A, B and T and you also see the edge cos. And if one uses the greedy 

technique to find the length of the shortest path from S to T by being greedy. In the sense 

that from S we choose the edge of these to 8, then from A we chosen edge of the least 

weight and form and B we choose an edge of the least weight. Then, we can conclude 

that the greedy algorithm will output path of the length 8; however, it is quite clear that 

the length of the shortest path is indeed 9. 
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In this example, the algorithm does output the shortest path, but let us look at the shortest 

path in a slickly more complicated looking graph. If we are greedy then the greedy 

algorithm will choose the path, which goes from S to the vertex A. Because, the edge 

weight 1 is shortest among all the edge are go out of S and from A it is choose us the 

cheapest edge width, which is 4 and a takes it to the vertex B and D we choose the 

shortest edge, whose cause is 18 and we conclude that the greedy algorithm outputs a 

path whose length is of 23 units. As opposed the shortest path which is from S to C, C to 

F and F to T and the cos of this path is indeed 9. Therefore, it is clear that to solve the 

shortest problem a greedy strategy does not work. 
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Let us just look at the dynamic programming approach and let us also makes some 

observations about the shortest path. The length of the shortest path from S to T is obtain 

by calculating the shortest paths viva the vertices A B and C respectively and then 

picking the shortest path among the 3 in this example, it is quite clear S and S has 3 

neighbors only, which are called A, B and C respectively. 

Now, if we know the shortest path from A to T and the shortest path from B to T and this 

shortest path from C to T respectively, then adding of the appropriate edge cos from S 

and then choosing the minimum will very clearly give the shortest path from S to T. 

Therefore, what we have now observed is that, it is solve the shortest path problem, we 

need to solve recursive versions of the shortest path problem from neighboring vertices. 



Let us this look at the formulation of the distance from S to T R. In other words shortest 

path from S to T, clearly as we just discuss distance from S to T is minimum over 1 plus 

the distance from A to T, the one comes because the edge weight from S to A is 1, 2 plus 

distance from B to T. Because, edge weight from S to B is of cost 2 and 5 plus distance 

from C to T the edge weight from S to C being 5. Indeed if we know the shortest path 

from A to T, B to T and C to T respectively, this minimum gives us shortest path from S 

to T. 
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Now, the distance from A to T the relevant part of the graph shown here, the distance 

from A to T as you can see is the minimum of four 4 distance 4 plus the distance from D 

to T plus. The distance from A to T is given by the minimum of 4 plus the distance from 

D to T and 11 plus the distance from E to T, where D and T are only neighbors of A. 
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We can similarly now formulate, the distance from B to T the distance from C to T and 

distance from S to T can then be used to calculate. So, the distance from B to T is again 9 

plus the distance from D to T. The distance from B to T is given by the minimum of the 3 

distance is viva D viva E and viva F respectively. Similarly, the distance from C to T that 

is just single path that goes through F and this is given us 2 plus the distance from F to T. 

One can over observe that the distance from S to T will indeed choose the path that goes 

viva C which is of cost 9, because that is where the minimum is obtain. What we have 

done in the slide show for is so observe that a recursive formulation of the distance 

function in terms of distances from other vertices to the designation is helpful in 

computing the shortest path. 
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It is also possible to observe that one can calculate the distances from the recursive 

formulations which we have just observed. One can observe with the distance from S to 

D and intermediate vertex, not essentially T is the minimum of the distance from S to A 

plus a distance from A to T. And similarly distance from S to B plus the distance from B 

to D, in other words we are taking the minimum of the distances viva intermediate points 

A and B respectively. Similarly, the distance from S to E and distance S to F are also 

presented. 
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Now, that we can seen in this example, let us just formally state dynamic programming 

and it is purposes. It is use for solving optimization problems which are minimization 

problems or maximization problems. And in all these problems set of choices must be 

made to get an optimum solution, in the examples that we look at the appropriate edges 

must be chosen and find the length of shortest path from S to T. 

The choices are the edges that must be taken by a shortest path from S to T, there may be 

many search paths. For example, an under reacted graph I am every path with a least 

number of edges from S to T is indeed shortest path and our goal is to find an optimal 

solution, then other words to find the optimal set of choices. 
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When we designed a dynamic programming algorithm, the approaches that we take is to 

first understand the structure of the optimal solution and characterize this optimal 

solution. By characterization we mean, that we identify certain very important properties 

of solutions which necessitated then to be optimal solutions, that is what we mean by a 

characterization. After characterizing the structure of the optimal solution, we then 

recursively go ahead and right the recursion the recursive expression for the optimal 

solution. 

And then compute the value of the optimum solution in a bottom of fashion, the last 

computation is indeed done viva program. But, we first to are analytical exercises and 

the computation indeed implements the recursion. 
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Has an example, we study the assembly line scheduling exercise, which is an 

introductory exercise and dynamic programming in the standard textbook by corner 

license and drivers and the pictures that you see are taken from the textbook. Assembly 

line scheduling can be very intuitively visualize, it is a very important problem in the 

area of the manufacturing. The frame work is that is often automobile factoring, the 

frame work is often a automobile factory, which has two assembly lines, each line has m 

processing station. 

On the first line the processing stations are called S1,1 to S1, n and in the second line the 

processing stations are call S to 1 to S to n respectively there are n stations. Now, 

corresponding to the stations, each of the stations have a certain processing time, in 

particular for the station S1, j that is the j station on the line 1 the processing time is a1, j 

units of time. And similarly at the station S2, j the processing time is a to j units of time. 

The entry times into the station are e1 and e2 respectively, the entry times into the lines 

that is the entry into the first station s1, 1 and the entry into the first station S2, 1 are e 

one need to respectively and the exit times from the station are x1, 1 x 2 respectively. 
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One can assume that in this automobile factory are car chase enters one of these to 

assembly lines and then goes through from one station to another and exists with a 

completed vehicle alone the way. The car station, the car alone the way are car can stay 

on the same line by going to the next station in the line and it does not pay any cost in 

terms of time duration or it go transfer to the other line with a cost which is t i j units of 

time. 

In other words if a car get process at station a S1, 1 then it can either go instantaneous to 

station s1, 2 are in t1, 1 units of time it can go to the station a2, 2. 
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So, what is the problem in this whole exercise? The problem with a whole exercise is 

that a chase must be rooted through this network, it must visit every station it does not 

matter in which line it get's processed. But, it must get process at every station and exist 

in the minimum amount of time, this is for a single chase. 
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Now, one of the ways of solving the problem is to actually try all the possible ways by 

which a chase go through the assembly lines. And it is very clear that there are 2 power n 

of them and computationally spending 2 power n units of time to actually find out which 



is the most optimal sequence is not an efficient approach. 
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So, the implementation of this idea is essentially to have a big binary vector, which 

essentially says if a certain bit. For example, in this case at step 3 if a bit set to 0 then the 

vehicle goes through station 2 in step 3 and if it is want the vehicle goes through station 

1 in step 3. The implementation of this Brute force algorithm is to keep a big vector, 

where 0 indicates the chase will go through line 2 and 1 indicates chase will go through 

line 1. 

And once these are fixed the time that the chase spends in the factory can be easily 

calculated, it is just a length of the path that goes to these stations. The some of the time 

durations on edge will tell us, the total time that the vehicle will tell us the total time 

chase spend in the factory, before existing. And then we can choose the big vector which 

gives the least solution and indeed we would have solve the desire problem; however, we 

would as spend 2 power n units of time. 
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To avoid this inefficient see in terms of amount of time that has been spend by the 

algorithm, in finding the optimal path. We try an understand the structure of an optimal 

solution, which is the first step in the design of the dynamic programming algorithm. In 

this graphics we indeed have highlighted, the optimum path in dark color, we will see 

how the algorithm will indeed find this particular path. 
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To understand the optimal solution, we invent a parameter of interest. Let us look at the 

station j on the first line and let us ask, if a shortest path goes through S1, j then do we 



have some information has to shortest paths to other stations that presided it that are 

computed in that shortest path. To understand these structure of the optimal solution, we 

ask the following question, if you look at the set of all possible ways from the start to 

exit viva S1, j there are two possibilities for are path that goes viva S1, j. 

The previous vertex before the station S1, j could have been the station S1, j minus 1 and 

direct transfer to S1, j are the previous station could have been S2, j minus 1 that is the 

station on that second line and the transfer over to S1, j. 
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We known make the observation that, the fastest way through S1, j is through S1, j minus 

1. In other words, if we consider all the paths that go from the start to exist, which go 

through S1, j and among these, if we consider the path which is the fastest. And let us say 

that, such as shortest path or such as fastest path indeed goes through S1, j minus 1. 

Then, it is also clear that such a path must have taken the fastest way from start through 

S1, j minus 1. 

The reason is very straight forward, indeed if there is a faster way through S1, j minus 1 

then we could have used it and found a faster path through S1, j. This is really the 

optimal structure are it is a structure of an optimal solution. 
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The structure of an optimal solution is, the fastest ways through S1, j contains with it an 

optimal solution to the fastest way through S1 j minus 1 or S2, j minus 1 whichever is 

there in the fastest way through S1, j. This is refer to as we optimal sub structure 

property, it is this property that is used to right down the recurrence for the length of the 

shortest path from S to T or the fastest path from S to T. 
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So, what we are going to do now, which is a second step it the process of dynamic 

programming is to right down the optimal solution in terms of the optimal solutions to 



sub problems. 
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Let us introduce some necessary notation, let us assume that f star is the fastest time to 

go through the whole factory. And let f i j denote the fastest time to go from the starting 

point, through the station S i j. Therefore, f star is very clear, f star is a minimum of the 

two terms which is f 1 of n plus x 1 that is the time taken to exit from line 1 comma f 2 

of n plus x 2 which is the time taken to exist from line 2. 

Therefore this expression tells us that we need to compute f 1 of n and f 2 of n 

recursively. 



(Refer Slide Time: 19:53) 

 

Let us start of with a base case, let us consider f 1 of n, let us consider f 1 of 1 that is 

through station 1, what is the fastest path that goes through station 1 on line 1, it is a time 

taken into enter line 1 and get process set of the first station, in this case as you can see it 

is 9 units of time. But, the generic formula that we can right down is that, f 1 of n is e 1 

plus a1, 1 this the time taken to enter into line 1 and the time taken to be process at the 

first station on line 1. 

Similarly, f 2 of 1 is a time taken to enter into line 2 plus the time taken to be process at 

station 1 on line 2, the formulae are return there f 1 of 1 is e 1 plus a1, 1 and f 2 of 1 plus 

e 2 plus a2, 1. 
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In general we can write a down recursive specification of f1, j or f2, j they are symmetric 

let us just look at the case for f1, j. So, the fastest way through s i j has only two 

possibilities. The two possibilities are use the fastest way to come to station j minus 1 on 

line 1, use the fastest way to cross station j minus 1 on line 1 and then the process at 

station j on line 1 or use a the fastest way to arrive at station j minus 1 on line 2, then 

transfer to line 1 and then get process at station j on line 1. 

Therefore, f 1 of j is a minimum of f 1 of j minus 1 plus a 1 of j comma f 2 of j minus 1 

plus time to transfer out of the j minus 1th station on line 2 to the j station of line 1 that is 

t to j minus 1 plus a 1 j. Observe that this is the recursive specification of f 1 of j, the 

recursive specification f 2 of j is also similar. 
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And this basically tells us the recursive solution of interest for every station on each of 

the two lines. Having formulated this recursive specification of the time taken to cross 

station j on line 1 on the time taken to cross station j on line 2 and this we done for every 

j between 1 and n, we know wonder how what it is to calculate these values from these 

formulae. 
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And this is the exercise of the computing the optimum solution. And one of the ways of 

solving the optimum solution is this solve the unit top down fashion and clearly if on 



tries to compute f 1 of n and f 2 of n in a top down fashion at every step, we are taking 

the minimum of the two quantities. And it is clear that the running time of this algorithm 

which is to evaluate the recurrence, in the top down fashion will take an exponential 

time. 

In other words, it will take 2 power n units of time, which does not seem to be a 

significant improvement, which is not an improvement at all over the simple algorithm 

that we started out with the brute force algorithm. 
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On the other hand, if one uses the bottom up approach, one can indeed observe that the 

values of interest f 1 of n and f 2 of n can be very easily calculated. The main observation 

that we make z for j greater than or equal to 2, the value of f i of j depends only on f 1 of 

j minus 1 and f 2 of j minus 1. In other words, the fastest way of crossing station j on 

either line depends only on the fastest way of crossing station j minus 1 on line 1 and the 

fastest way of crossing station j minus 1 1 line 2. And we compute the values of f i j has 

describe here, in increasing order of j. 
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Let us look at the time taken to cross station 1 which we know, in this example we can 

see that the fastest way of crossing station 1 on line 1 is 9 units of time, on station 2 it is 

12 units of on line 2 the fastest way of crossing station 1 takes 12 units of time. After this 

let us look at station 2, the fastest way of crossing station 2 on line 1 is 18 units of time 

and the number in parenthesis says, which station on which line was a previous station. 

In this case, the fastest way of crossing station 2 on line 1 is viva station 1 on line 1 

itself, which is an instantaneously transfer to station 2 and then 9 units of processing 

time. Also the fastest way of crossing station 2 on line 2 is to actually through station 1 in 

line 1 and then transfer to station 2 on line 2 and the process at station 2 on line 2. 

Observe that, this is 16 units of time has suppose to 12 units of time plus 2 unit of time to 

transfer has suppose to 12 units of time at station 1 on line 2. 

And then instantaneously be transfer 2 station 2 on line 2 and then use for 5 units of time 

which makes it is 23 units of time. Similarly, at station 3 on line 1 observe that the fastest 

way of crossing station 3 on line 1 goes through station 2 on line 2 and uses 20 units of 

time. As suppose to crossing station 3 on line 2 which takes 22 units of time, similarly 

crossing station for on line 4 takes 24 units of time viva station 3 on line 1 itself. 

And on line 2 it takes 25 units of time viva station 3 on line 1 and crossing station 5 takes 

32 units of time viva station 4 on line 1 and 30 units of time viva station 4 on line 2 and 

then the exit takes 3 and 5 units of time respectively. Therefore, the quickest way of 



getting from entry to exit is 35 units of time viva station 5 on line 1. 
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Having gone through these hole exercise of recursive of identifying the optimal sub 

structure and recursively specifying the distance function. And observing there it can be 

computed in at a bottom of fashion, computing the optimal root that is the sequence of 

stations through which the shortest path pass through is left as an exercise. Then, next 

example of dynamic programming which we will study is the problem of optimal matrix 

chain multiplication which will be done then will be meet next. 

Thank you. 


