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Greedy Algorithms-Job Scheduling 

 

So, today's lecture is about greedy algorithms, and specifically we will be studying one 

algorithm for a problem call job scheduling. The initial part of the presentation will 

present you the motivation for greedy algorithms by a very simple algorithm, very 

simple example. The example is the change making example. So, let us consider the 

following problem where for an example let us consider we have 832 rupees, and using 

as few notes and coins as possible, we should keep 832 rupees let us say in our purse. In 

general we know the there are 9 denominations of rupees in the Indian currency. So, let 

us call these denominations d 1 to d 9, indeed they take the values from 1000, 500, 100, 

50, 20, 10 , 5, 2 and 1.  
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Naturally we wish to carry as few notes and coins as possible and the generic question is 

given M rupees identify 9 variables; these are integer valued variables, positive integer 

valued variables. Such that M rupees can be written as a sum of x 1 times, the first 



denomination d 1, x 2 times the second denomination d 2 so on up to x 9 times the ninth 

denomination d 9. For example, 832 can be written as one 500 rupees plus three 100 

rupees one 20 rupees, one 10 rupee, and one 2 rupee coin. In general do you have a 

natural approach here to solve this problem. The natural approach seems to be that 

iteratively we select the large largest denomination, which is available which is smaller 

than the current amount. Let us observe this by us the example itself 832 is the current 

amount in the largest denomination which is available to us is a 500 rupee note. So, we 

pick up 500 rupees and the balance that is to be expressed is 332. Now 332 the smallest 

the largest denominations smaller than 332 is a 100 rupee note, naturally we pick three 

times 100 th, we pick 100 once then the balance is 232, the smallest denomination large, 

the largest denominations smaller than this amount is another 100, and so on. So, we pick 

three times 300 rupees. Then we pick at 20 rupee note, because a balance that is to be 

express is 32 rupees and so on. So, the generic idea seems to be that we select the largest 

denomination that is available, such that it is smaller than the current amount that we 

need to express. 
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Does this always work independent of the denominations, this is an interesting question. 

Observe that we did our exercise with the Indian currency with a fix set of 

denominations, let us imagine whether this approach will work for any arbitrary set of 



denominations in some currency. Let us assume that there is a country with currency 

right whose denominations are 1, 3 and 4 respectively, and there is no other 

denomination. Would our natural generic approach yield the optimum solution, let us see. 

Let us consider the simplest case of 6. So, if you apply our generic approach we will pick 

the largest denominations smaller than the amount which is 6, therefore we will pick 4 

after which we are left with 2, which can be expressed as 1 plus 1.  

So, our solution would be 4 plus 1 plus 1, on the other hand it is clear in this very simple 

example that the best denomination possible, the best representation of 6 possible in this 

currency is 3 plus 3. Therefore, it is clear that this generic algorithm which seems to be a 

very natural approach, it does not work for all currencies, it depends only the seems to 

depend on the denominations. At definite exercise which we will not address in this class 

is does this work for the Indian currency in if so why does it? We will not addresses, but 

this is a left as an exercise for the interested student.  
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This takes as to this whole idea of greedy algorithms. So, observe that our algorithmic 

approach is a greedy approach, we choose the locally best possible choice. So, given a 

certain amount, we choose the largest possible denomination without exceeding the 

current amount. So, this is in some sense a greedy choice hopping that this will 



eventually lead to a optimal solution. As we have seen it does not work for all currencies. 

So, therefore, greedy algorithms should have an optimal substructure. What is an optimal 

substructure? We should be able to guarantee the existence of an optimal solution to the 

problem, such that this optimal solution also contains optimal solutions to the sub 

problems. This is a very important concept, you have a problem and you also have sub 

problems of the problem. This is best illustrated by the shortest path problem in any 

network. Let us assume that the network is undirected, and let us sink of the shortest path 

problem between a source and destination. 

Observe that if you pick any shortest path between the source and destination, and if you 

pick any pair of vertices on the shortest path not necessarily, so source and destination, it 

is clear that the shortest path contains a shortest path between the intermediate points. 

So, very natural property of shortest path. So, this is the optimal substructure. Observe 

that no algorithmic choices here, it is just a property of an optimum solution. The greedy 

choice property is an algorithmic choice, it is says that you can obtain a globally 

optimum solution by making locally optimal choices. We have seen this example of the 

change making problem, and we wonder whether it has a greedy choice property.  
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We have already observed that if the denomination is denominations are 1, 3 and 4 



respectively, if you take an optimum solution. Let us take the optimum solution for 6 in 

this example, which is 3 plus 3, note that every sub set of notes is the optimum change 

for it some. So, in this case every sub set is just the note 3 itself, which is optimum 

change for itself. So, this is easy. The greedy choice on the other hand is not satisfied as 

we have already seen we will select 4, then we selected one followed by a one in this 

turned out to be suboptimal. So, we repeat this exercise would the greedy choice work 

for the Indian currency. Indeed in this slide we have observed that the optimal 

substructures seems to work for any currency. 
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However, like I said earlier we will not address it in this presentation, because the 

problem was not as easy as it seems, it is very easy to state it, but it is very closely 

related to problems, which after many years of research have not yielded to give efficient 

yielded to efficient algorithms for example, there is a problem called the knapsack 

problem. It does not have efficient algorithms to date it is believed not to have efficient 

algorithms, there is also the optimum denomination problem which is actually a problem 

face by currency designers. Where the question is what is the best denomination to 

ensure that for every number you get the smallest possible change by our approach.  

So, therefore, let us ask as slightly different question, other problems for which greedy 



algorithms result in optimum solutions, this is the focus. The change making example 

was a natural example to visualize the greedy algorithm scenario. 
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Let us look at the problem, which is very well in call, very well known as a scheduling 

problem. There is a single machine, and there are n jobs; each of these jobs can run only 

on this single machine, and should be run on the single machine, and the jobs are already 

known to have running times t 1, t 2, to t n respectively. In other words the job j i takes t i 

units of time on the machine M. They aim is the following, the aim is identify a schedule 

of jobs, that is the order in which the jobs will execute in the machine. So, that we 

minimize the sum of the completion times.  

Now minimizing the sum of completion times can also be thought of as minimizing the 

average of the all the completion times, it is very important for the student note that this 

average duration, this is not the average duration which is a fixed number, it is the 

average time that a machine spends waiting for the average time a jobs spends waiting 

for a machine, and then the time that it spends on the machine itself, one once to 

minimize this quantity. Therefore, the goal of this exercise is to find an ordering of jobs 

to execute on a machine. So, that we minimizes the sum of completion times. 
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Let us do the small example; there are 4 jobs; job one takes 15 units of time, job 2 takes 

8 units of time, job 3 takes 3 units of time, job 4 takes 10 units of time. The total duration 

that the machine will spend executing these jobs, clearly is 15 plus 8 23 units plus 3 26 

plus 10 36 unit of time. Therefore, the average duration on the machine seems to be 9 

units of time is 9 units of time.  
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However, the completion time is a completely different entity as shown by this graphic. 

Consider the first schedule in this graphic, where job 1, job 2, job 3, and job 4 are 

scheduled; job 1 finishes after 15 units of time on the machine, job 2 then finishes after 8 

units of time, therefore the completion time of job 2 is 23, job 3 which actually spends a 

least amount of time on the machine, which is 3 units of time completes at time instant 

26 and job 4 completes a 36 as a time ((Refer Time: 11:10)). Therefore, now if you 

average these completion times, we see that the average is 25, that is 100 units of time is 

spent, there is sum of the completion times is 100. On the other hand, let us consider the 

second schedule, where interestingly the shortest job is schedule first, then the second 

shortest job, then the third shortest job, then the fourth shortest job which is the order, 

job 3, job 2, job 4, and job 1. Now observe that the average completion time is 17.75 

units of time, which is smaller significantly than the schedule where the jobs where 

scheduled according to the order in which they were presented in the input. So, now do 

you have an algorithm here to minimize a sum of completion times. To do this let us 

write down the formula for the sum of the completion times. 
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Before that let us look at the schedule. Let us look at properties of the schedule before 

we do the calculation for the sum of the completion times, let us look at a property of a 

schedule. One observation that we can make is that if we taken arbitrary schedule and 



exchange the position of a shortest job in particular let us say the first shortest job in the 

schedule with the first job in the schedule. So, let us look at our example in the first job, 

if we exchange the jobs j 3 with a first job observe that we will get a better schedule, 

then the one that was given first. So, if we assume that there is always an optimal 

schedule where the first job is a shortest job, then it is clear that there is a very interesting 

optimal substructure that if you remove the shortest job, the remaining schedule for the 

remaining jobs is indeed optimal. In other words, if you take a optimal schedule in which 

the shortest job is schedule first by removing that shortest job. The remaining schedule is 

indeed an optimum schedule for the remaining N minus 1. Of course, we do not know if 

there is an optimal schedule which contains the shortest job first, that is what we are 

going to study now by writing down a formula for this sum of the completion times. 
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So, do this let us assume that there is a schedule which we refer to using the Greek letter 

sigma, and let us assume that sigma 1 denote the first job and sigma N denote the Nth job 

in the sequence. Now, let us look at the sum of the completion times, the sum of the 

completion times is return as a first formula where there are N jobs, and let us observe 

that the time taken by the first job, that is the job sigma of 1 that will be counted it will 

delay every sub sequent job, apart from using t sigma of 1 units of time on the machine. 

In the first job that we schedule which is sigma of 1 takes t sigma of one units of time on 



the machine, not only there it also delays remaining n minus 1 jobs by t sigma of 1 units 

of time, same for t sigma of 2 it is a second job - it is completion time is the time there it 

spent waiting for the machine which is t sigma of 1 plus a time that it spends processing 

on the machine which is t sigma of 2. In general if you look at the whole expression for 

the sum of completion times, the formula is given there, it is N terms in the summation 

and there are n minus k plus 1 copies of t sigma of k. 

And that is explained in the equality there which says that the completion time is t sigma 

of 1 plus the completion time of the second job which is t sigma of 1 plus t sigma of 2 

plus a completion of time of the third job which is t sigma of 1 plus t sigma of 2 plus t 

sigma of 3 and so on up to the completion time of the nth job which is t sigma of 1 plus t 

sigma of 2 up to t sigma of N. If i rewrite the summation by adding and subtracting a few 

terms, we get the third term in the whole equality sequence which is viewed as 2 

summations. Observe that the first summation which is N plus 1 multiplied by 

summation of the processing times of the N jobs, that is the first term minus summation 

k times t sigma of k that is the kth job the processing time of the kth job. Observe that the 

first term is independent of the schedule and the second term really be is very dependent 

of the schedule. Observe that this sum of completion times is indeed valid for every 

schedule sigma, this is a very important thing.  

So, what we have done in this slide is to write down the close form expression for the 

sum of completion times, for a arbitrary schedule which we have call sigma. And then 

we have observe that this sum of completion times can be viewed as 2 summations; one 

that is independent of the schedule itself and the second one which is dependent of the 

schedule. And there is a subtraction term there, therefore as a second term increases the 

total cost becomes smaller. So, let us see what makes a second term to decrease? Let us 

see what makes the second term to actually increase, and therefore reduces sum of 

completion terms completion times. 
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So, let us see a property of an optimal schedule. So, let us imagine a schedule sigma, and 

let us assume that there is an index x which is more than an index y, but the processing 

time for the job which is scheduled as sigma of x is smaller than the processing time of 

the job schedules sigma of y. In other words y is scheduled sigma of y is later than sigma 

of x, but the processing time of sigma of y is larger than the processing time of sigma of 

x. So, let us try the most natural thing, let us exchange the positions of the 2 jobs. So, in 

other words, what do we do we exchange the position of the job in position sigma of y 

with the position of the job sigma of x. And let us see how would changes the duration. 

So, let us see what happens, we should just go back to the formula and observe that the 

terms just change by modifying the multipliers appropriately. In other words, we have 

written down in inequality which says that x times t of sigma of x plus y times t of sigma 

of y, this is the contribution to the second term by these 2 jobs, and then we may 

exchange the position of these 2 jobs. The contribution just becomes y times t of sigma 

of x plus x times t of sigma of y. 

We now show that x times t of sigma of x plus y times t of sigma of y is smaller than the 

summation after swapping it, that is y times t of sigma of x plus x times t of sigma of y. 

This is very easy to see by the following sequence of expressions by just rewriting x 

times t x times t subscript sigma of x plus y times t subscript sigma of y, this sequence of 



expressions actually shows that the exchange actually increases the value of the second 

term. 

As a consequence of this, it is clear that if we start off with an arbitrary ordering and if 

we identify a pair of jobs at sigma of x and sigma of y with the property that sigma of y 

is later than sigma of x, and the time taken by the job schedule that sigma of y is more 

than the time taken by the job scheduled at sigma of x. If we exchange these 2 jobs. The 

contribution to the second term in the sum of completion times reduces, and therefore we 

have a new schedule whose sum of completion times is strictly smaller.  
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Consequently the greedy algorithm is a very simple algorithm it says that from the given 

set of jobs schedule the shortest duration job first. That it is indeed an optimal algorithm 

follows from our analysis of the completion time that this schedule has a smaller 

completion time than any other schedule. 


