
Programming, Data Structures and Algorithms 

Prof. Hema Murthy 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

Lecture – 49 

Module – 09 

Other applications: expression tree from 

The post-order expression 

Traversal of binary trees: preorder, postorder, inorder; 

Illustration with expression tree and infix, postfix forms 

 

There are many other applications like constructing the expression tree from the 

postorder expression. I leave you with an idea as how to do it. 

(Refer Slide Time: 00:12) 

 

Suppose, I have a b c plus and star, what we do is, when we have symbols, first we have 

again a forest of trees pointing to a, this pointing to b, this pointing to as use, you 

traversae from the left to right of this expression. As you move from left to right of this 

expression what you do, you just create pointers to trees in a forest. Then, what you do is 

you come across plus, then you create a new node with plus and then, you take the top 

most two, it is like a stack, it is actually like a stack. 

Then, you it is actually a stack of tress. What we do is now I put these from left to right, I 

put the trees a, b and c. And then, as soon as I come across the operator, what do I do, I 

pop the most recent two trees, then I create a new tree with the plus and I make the first 

tree the left child, the most recently popped out tree is the left child and the previously 

popped out tree be the right child. 



Now, again I have one more symbol left, I come across the star. So, I pop out both the 

trees and I create put on to the stack, the star and the two pop trees become the, most 

recently popped tree becomes the right child and the most recently popped tree becomes 

the left child and the previously popped tree becomes the right child and as soon as, until 

you get a single tree which exists on the stack. So, this is the other application of binary 

trees and stacks. Both of them can be used quite efficiently to build what are called 

expression trees. So, this is a very, very useful application of binary trees. 

(Refer Slide Time: 03:07) 

 

Now, another thing we always like to do when we build binary trees. Let us take this 

expression tree itself, let us look at an expression. Let us say we have something like 

this, then what we are doing the expression is evaluated,. So, it is evaluated from left. So, 

let us say I have this here plus star b c actually go over this from the right and let me. Let 

us say I form an expression tree, I am not known how many of you are familiar, we use 

this kind of a expression parsing to do this expression form or expression and term is 

form or a factor and let us say factor is the name as it is what it mean, let us say this is a, 

b, c and. So, on here. 

Suppose, I use this grammar to generate this expression, we have already done a course 

on compilers. Let us see, this is completely an unambiguous grammar, we add up here is 

plus or minus mult or star or slash, let us say. So, how do we parse this given expression? 

So, we start from the root over here, expression is defined as expression add operator 

terms, I start it over here. 



(Refer Slide Time: 05:48) 

 

Plus, then what do we have, then on the left hand side, then the other plus again add the 

plus, then I will get a here, I will get star b c and star b plus e f, this is how you will get a 

binary tree. What I have done is, all the exercise that I have done is to just show that the 

expressions, how many expressions that I have written like this, it can be written as the 

binary tree. Now, what we will do is we will talk about other things now. We will talk 

about traversal of this tree. Let us see what it gives us. There are three types of traversal 

preorder, postorder and inorder. Now, the definitions are given over here, how to traverse 

these trees. 

(Refer Slide Time: 07:06) 

 

So, preorder traversal says visit the root, then what you do, you visit the left child in 



preorder recursively, visit the right child in preorder recursively. It means what now, let 

us take the…Then, the inorder traversal says visit the left child in inorder recursively, 

visit the root this is the right child in inorder recursively. Then, postorder traversal says 

visit the left child in postorder. 

(Refer Slide Time: 07:39) 

 

And visit the right child in postorder recursively, visit the root, got it. Let us see what this 

gives,. So, everything has to be done recursively. What is the meaning of this? 

(Refer Slide Time: 07:52) 

 

Let us look at inorder traversal, visit the left child in inorder recursively. Let us say, I 

want to do this traversal of the tree, traversal means simply walking around to it. Thus 



the way the listed node is got changes. Now, what it says let us look at inorder traversal, 

it says first we look at inorder, because it will become clear to you what we are doing. 

Visit left child recursively, visit root and visit right child recursively is what here inorder 

traversals. 

So, let us look at the tree what could we do. So,; that means, I am starting from the root 

here and I am going to recursively keep on going down to this until I reach the leaf node. 

Then, what do I do, I display the leaf node. So, I keep going down, because I have to 

visit the left most child. Then, what happens I go up, then I visit the root and get plus, 

then again I go to the right child and again after recursively do the same thing; that 

means, what preorder, inorder all these are recursive traversals. 

So, I go to the right child, then again I will do left child recursively root, then then right 

child and then go back. Then, what happens here,. So, I come down this plus go down 

here, this becomes b star c and then what happens, this is node as we already been 

visited,. So, I go back up to the root of the tree, b may plus, then again I come to the right 

node star, again I have to do the recursively left child. So, I do d, I come to the leaf node 

star, then I have to add e plus f, the bracket has to come, because it is one level lower. 

So, inorder traversal essentially gives me the expression back. So, what is it tell me now, 

may I look at the inorder traversal of the tree, I get the infix expression of the given tree. 

This one extra information that we have used here, we use the factor star is done after 

plus, because it is one level lower in the tree,. So, I get the infix expression. So, let us 

look at what postorder expression, postorder traversal of the tree will give you. 

What does postorder traversal say, ((Refer Time: 10:55)) postorder traversal says visit 

left child postorder in postorder recursively, then ((Refer Time: 11:03)) visit right child in 

postorder recursively, visit root and the same thing keeps on getting repeated again and 

again. So, I take the left child recursively visit in postorder, let me just explain this over 

here. Actually, what is mean to us, what does it gives you,. So, I am moved here, visit the 

left child, I cannot came down, there are no more leaf nodes,. So, I display a. 

Then, I have to go to the right child, go back left child, right child and then root is what it 

says, go to the right child. Then, right child again I have to recursively go down, do 

postorder, left child, right child, then root. 



(Refer Slide Time: 11:45) 

 

So, what will happen, I get a b c star, then, what do I get, now all of them have been 

visited, I go back up,. So, left child, right child, then root get plus here and then, what 

happens. So, the left child of this root tree is completed now,. So, I go to the right tree 

over here. Then, what do I get now, what do I get here now, I have get d, then again this 

is the left child, this is the leaf node, there is nothing else to see, therefore, I display the 

leaf node. 

Then, I go to its right child, again I have to look at postorder over there. Therefore, I get 

e f plus plus e left child postorder, right child postorder, root then I will put the plus over 

here that is how it comes here and then finally, this star and then finally, the plus, the last 

plus sign, that we have. So, I am made a mistake here, this plus should not be here. See, a 

b c star, then I have to do the right child, d e f plus star plus. So, what did we get now, we 

got a b c star plus correct, d e f plus star plus. How many are there? 1, 2, 3 correct. 

So, this is what we get as the expression. What is the expression now, this is nothing,, but 

the postfix expression which all of us have already been done. When we talked about 

stack, stacks we talked about generating the postfix expression from an infix expression. 

So, what is interesting here is once it is represented as a binary tree, if I do inorder 

traversal I get the infix expression, when I do postorder traversal I get the postfix 

expression and obviously, if I do preorder traversal I will get the prefix expression. 

So, this is also a very big application of binary trees. Now, once this expression is given 

like this, I can use this stack of trees to evaluate this particular expression. So, I hope you 



are with me here and you have understood what I have said. So, what is it we are doing 

notice that neither we have looking at this various traversals to make it simpler is 

preorder traversal can be thought of as, you display the node the first time you visit it. 

In inorder traversal, you display the node the second time you will visit it. Remember, I 

have drawn this path over here which goes around the tree and in postorder traversal you 

display the node, the last time you visit it. So, these are simple traversals schemes. So, 

now the next question that we would like to ask is suppose you are given only the 

traversals, traversals are given, can we construct the tree exactly? 

Let us look at only with respect to binary trees and see if I am given the, what is that we 

have two traversals now, inorder traversal and we have the postorder traversal. We can 

also do the preorder I encourage you to do the preorder traversal of the tree. Now, given 

the inorder traversal can I construct the tree uniquely without any other information and 

given the postorder traversal, can I construct the tree uniquely, let us see how you will do 

this in the next lecture. 


