
Programming, Data Structures and Algorithms 

Prof. Shankar Balachandran 

Department of Computer Science and Engineering 

Indian Institute Technology, Madras 

 

Lecture – 45 

Assignment on Data Structures 

 

So, now, what you going to see is to see the solution to the hash table question. 

(Refer Slide Time: 00:19) 

 

So, let us go over this question once again, what is it say? A hash table is a data structure 

that maps a set of keys to a given set of values. It uses a hash function to compute an 

index into an array of buckets or slots, from which the correct value can be found or to 

which a correct value can be inserted. A hash function will assign each key to a unique 

bucket or slot. In practice; however, there are many more than 1 key that will hash to the 

same bucket such an assignment is set to result in a collision. In this assignment you 

have to implement a hash table using arrays and lists. 



(Refer Slide time: 00:58) 

 

The algorithm should accommodate the features described. You should take as input a set 

of 10 non negative integers and insert them into a hash table using this hash function 

where h of x equal to x for set 10. Then, input values that returns the same value for h of 

x have to be properly accommodated such that if there is a collision the index from the 

array to the appropriate bucket should point to a list that can take in all the values that 

hash to the same bucket. So, basically what you need is you need an array of list such 

that each entry of the array is a pointer to a bucket. For example, when h of x returns 4 

then input value should go in to the list starting from a 4 if a is your hash table. 

(Refer Slide Time: 01:45) 

 

Your program should report when there is a collision and must specify the position 



starting at one (Refer Time: 01.53) the list element in the input list of that key value 

where the collision occurred. It should also report the bucket number and the number of 

entries in the bucket. And if there are no collisions, the program should report no 

collision. The hash table class has been provided with the print collision function which 

you cannot re-write. What you have to do is the string that you want to print has to be 

made available in the private data variable collision using list collision function in the 

class hash table. 

(Refer Slide Time: 02:25) 

 

So, let us see how this can be implemented so, basically the constraints on the keys are it 

can be a value between 0 and 1000. 

(Refer Slide Time: 02:33) 

 



And if you take a sample input like this what does it that we are say () 77 23 231 785 900 

345 287 16 5 and 24. So, when you look at this 77 for example, when you take percent 

10 it goes into the seventh bucket is the first element there is no collision. Let the go to 

the board and give this example again for you are ready reflects. 

(Refer slide Time: 03:14) 

 

So, what you have here? We have 77 and let me retrieve the numbers appears 77 23 231 

785 900 and then I just go this first example 345. So, this is the key. So, what happens? 

When you take this 77 percent 10 this gives you a value 7. This 23 percent 10 will give 

you a value of 3, 231 percent 10 gives you a value of 1 and 785 percent 10 gives you a 

value 5, 900 percent 10 gives you a value of 0, 345 percent 10 gives you a value 5. So, 

now I am stopping with this, because now what is happen? So, what did you see now? 77 

hashes to an index of 7, 23 will hash to an index of 3, 231 will hash to an index of 1, 785 

index hashes to an index of 5, 900 to 0, 345 to 5. 

So, what did you have now? We have an array of first we have to define array. Now, in 

this array what are the how many elements to be have? We have 10 elements in the array 

2 3 4 5 6 7 8 and we call this is a bucket, each one of the indices of this array is called a 

bucket, because it is actually holds more than one value. So, now, what are we going to 

do? We said due to store these case in this hash table so, this is the hash table. Now, the 

problem is because, the, we have only 10 entries in the hash table. Clearly, because you 

are talking about 0 through 9 9 9 as a number set are possible you have you have more 

than 10 values and therefore, main numbers will hash to the same bucket.. 



So, that is the meaning of a collision has been already solved. So, now let see where we 

will put 77 we will put 77 over here. So, we create a list at this point and put 77 over here 

23 will go in to the third bucket we put it over here. Then 231 will go in to the first 

bucket. So, far so, good there are no collisions. 785 will go in to the fifth bucket, this is 

785 () here then 900 will go in to the zeroth bucket where remainder is zero and we have 

still not seen any collision. Now, 345 comes alone and we have a collision so, what is the 

collision now? 

So, now, at 340 what is that? It remainder is 5 therefore, would goes into the fifth bucket 

we already have a 1 element. So, we append this to the dust. So, what is this now here? 

Notice that each element of the bucket is a list this, implementation of a list can be done 

either using an array or a link list the list a d t is what you need to use over there. Now, 

what do you supposed to report? You are suppose to report the index in the element in 

the input list. So, the input list again 77 23 231 785 900 and 345. So, if you look at the 

numbers over here. So, this is the sixth element in the list where the collision is occurred 

and what is the bucket index? The index is 5 at how many elements are there in that 

particular bucket? There are 2 elements. 

(Refer Slide Time: 07:34) 

 

So, now, and you are supposed to report the result like this 6 5 comma 2 and that is what 

is given in the sample output and have more examples there are given in this in the 

question that is being given (). 



(Refer Slide Time: 07:55) 

 

So, let us look at a solution to this particular program. So, this is kind of similar to the 

ADT that was done in the lectures on the list. So, basically you have a link list 

representation here. 

(Refer Slide Time: 08:07) 

 

And position point something point should list 8. In addition to that a new variable has 

been defined in the, for count in the list. 



(Refer Slide Time: 08:25) 

 

So, it is gives you the number of elements in the list. Suppose count was not there what 

would you do? You would write a function to count the number of elements in the list by 

going traversing in the list from the beginning to the end. Then make an empty list 

creation null node and insert elements in to the list find the end of the list all of them are 

the same get count returns the number of elements in a given list. 

(Refer Slide Time: 08:42) 

 

So, let us look at a class hash table now, what are the class hash table contain now? 

Notice this variable here list bucket of 10; that means, it is an array of list then it gives 

you the bucket index, number of element bucket and position in the where you want to 

insert in the particular bucket. And a strain a collision which has suppose to fill 



corresponding to the collision which has suppose to the fill up and report called this is 

required. Because they also say would print () whereas, be and no collision. 

(Refer Slide Time: 09:15) 

 

So, what are we doing now? Initially, because they the hash table is empty we said the 

counter in the hash table in the count for example, to zero for every one of the list we 

have an array of list how many do you have? We have 10 elements in the array and the 

counter in every element in the list every element of the bucket hash table corresponding 

to the bucket is said to 0.. 

(Refer Slide Time: 09:45) 

 

Then what are we doing? To insert an element we find the bucket index that is as define 



in the private variable. Once we get the bucket index and what we do? With this we 

create an empty list of the count is zero;; that means, there is no list of there then we find 

the position to insert and insert it at the end of the list. Then what are we doing? We get 

the number of number elements in the bucket basically at what position it has to be 

inserted in the given bucket and you return the number of elements on the given bucket. 

(Refer Slide Time: 10:23) 

 

That is what we insert function does slight variant of the insert that was done. And once 

you have this they are all done then list collision what are you doing? You are giving the 

position where the collision occurred. 

(Refer slide Time: 10:39) 

 



The bucket index and the number of the number elements in the bucket that is all you 

need to do. So, basically this is what you have to fill up this () no big deal over here this 

is string to which your basically concatenating the position and the bucket index and 

number of elements in the index. 

(Refer Slide Time: 10:55) 

 

And the print collision will take care of it then what is happening here? The print 

collision function is given and what is a print collision do if it the, if for example, there 

was the Boolean variable called report call. Basically there is no collision that occurs 

then it will print on no over there. 

(Refer Slide Time: 11:13) 

 



So, this is the essentially what this ADT is all about. So, what are we doing here? 

Basically are supposed to list the collisions that occur in the given data set as you have 

seen in the example. 

(Refer Slide Time: 11:29) 

 

So, let us run this with the given example over here. Table and let us say I gave even 

((refer team: 11:52)) 21 32 33 41 45 663 71 88 87 86. So, what is it telling me now, 21 

for example, will hash to bucket 1, 32 will hash to bucket 2 and 33 will hash to bucket 3. 

So, far no collision. But when 41 comes along it hashes to the bucket one again and what 

does it do? It gives you so, 41 as the 1 2 3 fourth element therefore, the first indexes 4 

here. And then what happens you have is the bucket number 1 and the number of 

element. So, far in that bucket are 21 and 41 which is 2 then 45 again hashes to bucket 5 

no collision. Then what happens? 663 hashes to bucket 3 and therefore, there is a 

collision therefore, this is the sixth element third bucket and now there are 2 elements, 

because 33 and 663 next what is happening? You have 71, now 71 will hash to one again. 

So, now, this is the seventh element in the list hashes to the first bucket, but, now 21 41 

71 there are 3 elements in the list. So, this completes the solution for the hash table 

problem. So, next we will look at the solution for the big int problem let us look at the 

big int. 



(Refer slide Time: 13:42) 

 

(Refer Slide Time: 13:43) 

 

And we will guess see how this is getting done. 



(Refer slide Time: 13:52) 

. 

So, what this is big int now, you are ask to find the sum of 2 large numbers here again 

and other implementation of list is given a different implementation. 

(Refer Slide Time: 14:01) 

 

 And you are suppose to use this implementation of list to perform big int arithmetic. So, 

what is being done here let us see. So, what are we doing? To perform big int arithmetic 

what us suggested is you have to implement at last call big int now, and with in this class 

you using a private variable list just like we did this stack from the list. 



(Refer Slide Time: 14:21) 

 

And what are you doing? You are appending a given number prefixing the big int 

number and you have to perform is add operations and print. 

(Refer Slide Time: 14:30) 

 

If you want you can have suppose there are leading is () 0 you can removed are 

whatever. So, what are we doing now? The first function that is given to you it is 

populate and it is suppose to write you code here. 



(Refer Slide Time: 14:52) 

 

So, what are we doing? As I am mentioned previously we read the big integers this is the 

big int 1 and this is big int 2 we read them as strings and what is being done in this 

particular program subbing clever is being done what is done is () what is the big int 

using? It is using a list. So, what we doing is we are inserting every times so, I am 

reading from left to right as well as you read this elements approved in the first position 

next 9 is put in the first position. So, actually what is represented in the big int is I will 

tell you why it is being done list 6 5 4 3 2 1 and 0 it written text. 

And similarly, this other number here is written as 1 2 is inserted into the () list 1 2 3 4 5 

6 4 1 2 and 3 and 5. The reason for this is both of these let me rewrite this again what we 

are doing is in fact, this is the starting point in list one this let me call this list 1 are the 

big int 1 and this is 8 2. So, what is being done is I store 1 2 3 4 5 6 4 1 2 3 and 5. The 

reason for being this is that when we add 2 numbers remember we have to add from the 

least significant number position. So, what happens even these 2 are the beginning you 

can add these and propagate the carry.. 

Once you propagate the carry what you will do now? See if you add these 2 numbers this 

gives you 1 there is no carry 2 plus 1 for put it back out here this is put create a new list 

lecture 3 1 3 5 7 9. Now, this is an 11 here. So, now, this 1 should be added to this 2 

elements 6 plus 4 10, 10 plus 1 11 and this one more here 9 here 9 plus 2 11 and this 

becomes 12 and then finally, this 5 has to be added to the carry and should give you 6. 

So, this is what the 2 numbers should be. So, what are you saying? 0 plus 1 is 1 2 plus 1 

is 3 3 plus 2 is 5 4 plus 3 is 7 9 11 therefore, this becomes 6 plus 5 11 over here and 1 is 



carry. 

So, 6 plus 2 I wrote the number from over here 5 6 7 9 and 8. So, what would you do 

here? 0 6 plus 5 11 well, we are here now, so, basically 0 and 1 1 and 2 2 and 3 5 7 4 and 

5 9 6 plus 5 11. This is what is happening here then after the 6 and 5 have been add I get 

a 11. Therefore, 1 is the carry then after I have carried the 1 here I have here 6 plus 1 7, 7 

plus 4 11 again here then again there is one more carry 7 plus 1 8 gives you a 9. Because 

the carry there and then 9 plus 2 11 and whether carry there and then we have 8 plus 3 11 

plus 1 carry () said 12. And finally, this number which are longer than the second number 

longer than the first number you add the carry to it. 

So, essentially you should get this particular result, but, the result is in the reverse order. 

So, basically finally, 5 plus 1 6 is what you are suppose to get. So, this should be the 

result of the number, but, it is in the reverse order. So, what is done in this particular 

program if you look at it is to make this convenient, because you can start from the 

beginning of the list the population of the integer is done such that you print them put in 

the beginning.. 

(Refer slide Time: 19:07) 

 

Then there is the basically there are two functions append and prepend which you give 

here. Now, how you are suppose to write it when you add so, what you need now when 

you adding now, and yet, because you are adding two elements at a time. They will be a 

reminder and a carry which is represented by this and what are temp 1 and temp 2? Temp 

1 temp 2 correspond to the 2 list which represent the 2 numbers. 



(Refer Slide Time: 19:40) 

 

So, the first part what is done is by both of them are the same length till that is what is 

done is by temp 1 not equal to null and temp 2 not equal to null. What is being done is 

you get that data from both this lists you find the remainder you find the carry. Then you 

appended 2 other lists and you keep on to repeating this process until you come to the 

end of at least one of the list. 

(Refer Slide Time: 20:06) 

 

Then what we you do is as I said in this particular case for example, list 1 ended first and 

then list 2 ends later. So, it check which one ends first which one ends later and if there is 

a carry you add the carry also same thing is done for if the other one ended first and the 

carry is append.. 



(Refer Slide Time: 20:25) 

 

Then if you want you can remove the leading zeros of they are there in, because you are 

writing it in reverse order.. 

(Refer Slide Time: 20:30) 

 

And basically what is done in this main program as was told you are not supposed to 

write this function. You are suppose to populate the string a corresponding big int a big 

int b and then perform the, add of the 2 of them and print them. 



(Refer Slide Time: 20:48) 

 

 So, let us run this program what are what should expect now let me let say 1 1 1 1. So, 

here I gave 2 reasonably big integers 1 1 1 1 2 2 2 2 and it gives me () let us run it again. 

And that me gave 9 9 9 9 and give 1 let gives you notice that 9 9 9 9 is a 2 numbers this 

is for the one in the one given a () is big int and other one has only 1, but, 9 plus 1 10. 

So, what happens that is the carry and that is added to the next number and so, on this is 

the repeated it. So, this is the big solution to the big int problem. So, what we have 

looked at is the solution is to 2 of the problem that have been given as part of the data 

structures big 5 assignments where remember right. 

. 

 


