
Programming Data Structures and Algorithms

Prof. Shankar Balachandran

Department of Computer Science

Indian Institute of Technology, Madras

Module 12B

Lecture - 41

Brief introduction to C plus plus

Hello, welcome to this module on C plus plus. I promised earlier that we will see a quick

introduction to C plus plus and this material is done in such a way that, it will give you

just enough material to understand what is happening in the rest of the course. So, I will

start with a disclaimer.

(Refer Slide Time: 00:31)

This module is not a complete treatment on C plus plus. C plus plus is a vast ocean and

this next 15 or 20 minutes is not going to give enough justice to C plus plus. So, it is not

complete exhaustive treatment of C plus plus. Also, do not expect a lot of object oriented

programming skills, to be learnt in this 15 minute module, right. There is going to be just

enough material to appreciate the syntax of C plus plus and by no means, it is complete.

So, the basic material is based on Stroustrup's slides. So, he teaches this course on C plus

plus and he is actually the inventor of C plus plus. So, in some sense this is from the

horse’s mouth.

So, let us look at the notion of classes and objects. So, if you are in slightly senior year in

your class, in the second year or third year may be have done some C plus plus

programming. So, the notion of classes and objects are probably familiar to you, but I am

not going to assume anything like that. So, I am going to assume that you do not know

what classes and objects are. Let us start with this basic declaration called int x.

(Refer Slide Time: 01:45)

We can think of int as a class. So, it is a basic data type and the moment you say

something is int or an integer, you know that, there are certain operations that you can do

on it, and there are certain properties of integers. So, for example, integers can have only

values like 1, 2, 3, 0, -1, -2, -3 and so, on. You cannot have a valid value 1.6, right. So,

we know some of these properties about int. So, any time when you have something

called a class, you know that there are certain types. So, there are certain properties of a

class and there are only certain operations that you can do on the data type. So, for the

basic data types, the language itself tells you that these are the basic set of values that

you can take, and these are the valid operations that you can do, right. So, that is the

notion of our class..

Here if you look at x, x is actually an object, right. So, what we mean by an object is, it is

not something abstract when I say integer, right. When I say int, I am describing only the

properties that int integers have and the operations. Only when I say int x, we get a

location allocated to it and on this location, we can do various operations. So, the

operations of whatever on x, whatever operations are allowed, only those operations that

are allowed on integers. So, x is an object of the type integer. So, the class name is int

and the object name is x. I can have more objects of the same type. So, for example,

when I say int y, y is another object of the same type integer. So, at some level you can

think of types as classes and actual variables are objects. So, here y is another object of

the data type integer. So, this is all for basic data types. So, for basic data types, you

really do not need classes and objects this distinction is not really necessary because the

language itself gives you all of that. So, the notion of operations that you do on integers

and so, on also is already given by the language, whereas, if you have a user defined data

type, then it becomes useful and necessary to define, what is allowed and what is not

allowed, and to define what operations can be done.

So, let us look at the basic idea of classes. A class is actually a user defined data type that

specifies how objects of its type can be created and used, how do you create an object of

a certain class, and how to use it is described in the class. So, it directly represents some

kind of a concept in a program.

(Refer Slide Time: 04:36)

So, whenever you think of it. So, this notion of it as an entity, it is plausible that it is a

class or it is an object. So, let see things like this. So, I have the notion of a vector, a

matrix, a string and so, on. So, these are probably classes, whereas, I have a matrix

which contains all my student’s names and let say records their marks and so, on. Then,

that is a specific object. I may have a matrix which contains all these integers and I want

to do multiplication of integers and so, on. That is also a matrix, but it is a matrix of

integers. So, the object offers particular class. So, it is a physical entity or it is an abstract

notion, and C plus plus gives you this basic notion of defining classes. You can define

what the basic data structure is or the data type is, and you can also have instances of that

particular data type and classes form basic building block for building alley large scale

program. So, let us take a small example here.

(Refer Slide Time: 05:55)

We have class x followed by left and right flower braces and a semicolon, and we are

going to put in data members and function members inside this. So, the data members are

supposed to store the information and the function members are supposed to tell you how

to manipulate the data members, right. So, this resembles how you did it for structures.

So, there also we had something called struct type x and followed by braces, we had

members inside. Only difference is that we not only have data members here, we also

have function members. So, let us see a small example here, Class x has int m which is a

data member and int mf of int v which is a function or a method. So, we have a basic

data type inside it and we have a method inside it. So, that is a class. So, x is a class and

it has a variable m or the member m and it has a function mf. So, this function mf is

supposed to take an integer v, and it takes the value of v, puts it in m, but the old value

that was there before the function is called is supposed to be returned. So, that is the

functions member. So, this is something called get and set.

So, you are getting the previous value which is stored, but you are also setting it to the

new value that you supply. So, v is the new value that you supply, and the old value of m

is supposed to be retrieved. So, let say that is the class description and we will get to this

notion of public in a little while. So, let see how this class can be used. We have x var.

So, remember x is a data type. So, instead of class x var which we did for structures,

right wherever we had structures, we said struct x and so, on. For classes you do not have

to do that in C plus plus. X var. So, var is an object of the type x or the class x. Now, if

you want to access the member m in it, we can say var dot m. So, this is just like the

structure, right. We saw this before, right. Var dot m is 7 will change the data member to

7. Interestingly you can do something like this. We can do var dot mf of 9, right. What

this will do is, we will take the value 9 and supply that to this class. So, if the previous

value that contains 7, you will get this small case x to be the value 7, but you set it to 9.

So, here if you go and print var dot m after this line, this would have the value 9. So,

basically the nice thing about this class is that we have the member’s access with dot m;

the methods are also accessed with dot. So, both the methods and the data members are

accessed using dot operator.

(Refer Slide Time: 09:19)

So, now let us go and look at what is this notion of public versus private. So, again if you

are exposed to C plus plus, you probably know this already, but in C plus plus you can

have members and functions that are of two types, public or private. So, if it is public,

these members can be accessed by anyone outside whereas, if it is private, then both. If a

member is private, only the class’s methods can access it. If a function is private, right,

only this function cannot be called from outside. So, private members are supposed to

have implementation details that are hidden from the outside world, and public methods

and members are directly accessible from the outside world. We will see specific

examples in a little while.

(Refer Slide Time: 10:13)

So, what are the difference between struct and a class? So, let see class x. Let us say I put

int mf. By default all members are private in a class. So, if I did something like this class

x int mf, it means that mf is a method that you cannot call from outside. So, let say I did

class x, object x and y is x dot mf. This would be invalid because mf is a private method.

It cannot be called from the external world, whereas, if this had been a structure, right

struct x int m, by default that means, it is actually equivalent to our class x with m being

a public variable and structs are primarily used for data structures, where the members

can take any value whereas, you use classes whenever you want something hidden from

the programmer. So, the programmer should get clean interfaces like insert, delete and

so, on, and whatever manipulation is happening internally need not be exposed to the

program.

(Refer Slide Time: 11:30)

So, let see a small example which explains this in a little more detail. Let us say I have a

struct call date which has year, month and day and I have date my birthday. So, let say it

is tracking a birthday. If you do this, there is nothing which will stop you from writing

something like this. My birthday dot y is 12, my birthday dot m is 30, my birthday dot d

is 1950. So, if you look at the right side, they are all integers and the left side data types

are all integers. So, you are setting y to 12, m to 30 and d to 1950. So, as three it is

separate integers used, assign three separate values which is all, but there is a problem. If

we go and deal with this as a date, there is a small problem. You are looking at year 12,

maybe it is 12 AD, but the month is 30 and the day is 1950. This does not make sense..

So, maybe it was a mistake. It should have been year 1950 and day must have been 30

and probably the month must have been 12, where we are talking about 30th

December1950, right. So, maybe it was a mistake, but if you have a structure from the

outside, by mistake if you do this, there is nothing which will stop you from doing it

whereas, if it is a class, then I can put some check and protect invalid values from not

being taken. So, let us look at some other additional things, right. Let us say I want to

initialize the day. I have Y, M and D which are passed as three integers and I want to set

up this DD which is pointed to the date data type. So, I want DD's, Y, M and D to be the

values Y, M and D that are passed on. So, maybe I want a function like this, initialize the

members of this structure to certain values or I may want to add a certain number of days

to the type.

So, let say the current date is 30
th

 December 1950, and I want to add 2 days to it and

move to January 1, 1951. Let’s say I want to do that. I should be able to do it. Add a few

days and how a mechanism by which I not only recognize that 2 days from 30th

December is not 32nd December. In fact, it is not even in December, it is in January and

it is not even in January of this year, it is actually moving to the next year. So, if I add 2

days to 30th December, 1950, internally I want this to automatically move to January 1
st
,

1951. In fact, I may want to handle cases like leap year and so, on also appropriately. All

these details I do not want to expose it to the programmer. So, this becomes very

cumbersome. All I want to give to the programmer is add day as an interface. With

structures it is not easily doable because we can always come and manipulate these

values without going through these methods. You may go and improve increment d

directly without realizing that the triple D, M, Y is not valid. You may do that, but if you

are forced to go through add day as function always, then add day can be implemented in

a much cleaner way and all the errors can be checked and the function can be

implemented. So, that it is always correct. So, let us look at this, a small example. I have

int Y, M, D. I always want some valid value for the dates. So, I want what is called a

constructor. So, any time this object call date is going to be created, it has to be supplied

valid values, otherwise it would be incorrect and I want to be supporting add day. So,

even though it is given with struct date, this is not valid syntax. So, we would want class

date here, and class date will have three members Y, M and D and it will have two

methods date which will take the three initial values and add days which add then certain

number of days to the current date.

So, the moment you do this, if you do date my birthday, this would be incorrect because

it is not initialized. If you do date my birthday of 12, 30, 1950, the year is 12, the month

is 30 and day is 1950. Add day can be written in such a way that this can be recognized

as an error and this can be indicated. However, if you do date my day of 1950, 12, 30,

this would be recognized as a valid day and later if I do my birthday dot add day of 2, the

birthday moves from 30th December 1950 to 1st January 1951. So, this is clean.

However, if I do my birthday dot m is 14, this would be invalid because you are

accessing the member m directly and this is not correct.

(Refer Slide Time: 17:01)

So, if you do classes, the way to do that is you have Y, M and D as private and you have

all the methods as public. So, date is public. Add day will actually change the contents of

Y, M and D and we have three methods called month, day and year and these three

methods actually return the current month, the current day and current year. So, these

three methods give you only read access to the data. Date is supposed to give right

access. You can change the contents of Y, M and D and add day can also change the

contents of Y, M and D. So, date my birthday of 1950, 12, 30 will change Y, M and D to

be these three values and I can do printf percentage d my birthday dot month and my

birthday dot month is a method. If I go and look at that method, it returns m and what is

the value of m, it is supposed to be 12. So, it will print 12 here. However, if I do my

birthday dot m is 14; the compiler will catch it and dot it. Even when you compile it, the

compiler will catch it and say that m is a private attribute. It cannot be manipulated

directly. So, if you want to manipulate m, you can either, go and create a new variable

and access through it, or you can only add days to it. You cannot manipulate it directly.

(Refer Slide Time: 18:31)

So, the notion of a valid date is a very important special case, and you want to do this

and you want to try and design our data type. So, that there is always some guarantee that

the underlined data is valid. So, for example, may be I want to design a class that is

supposed to represent a point in the first quadrant, right. First quadrant is anything

including 0, 0 or origin, right. So, the first quadrant is anything including 0, 0 and if I

move to the right or I move up, that would be the first quadrant in a plane. I want to be

able to ensure that at no point of time, this point gets out of the first quadrant. I do not

want to do manipulations or I do not want to allow manipulations to go out of the first

quadrant. If I want to do things like that, then I will do operations and always check

whether the data is still in the first quadrant or not, and report an error if it gets out of the

first quadrant for things like this. So, to check validity, it is always useful to do this. To

allow classes to be defined and the classes can also go and check for the validity, right..

So, let see how this whole thing would look like. So, I was talking about this function

called date. This date has a special function which carries the same name as the class’s

name. So, we can see that blue and red one, they have the same name, right. The

constructors always take the same name as the class. In this case, the constructor is the

method which takes three integers yy, mm and dd and what it does is, it assigns your

local variable y to yy and the local variable m is assigned to the value mm, and the local

variable d is assigned the value dd. So, if you create an object of the type date and if you

put date of 12, 30, 1950, internally you can write code within the constructor which will

go and check that and say that it is invalid, right. However, if it is valid, it initializes it

and this check that you do inside the core may just leave it as it is.

(Refer Slide Time: 20:52)

So, if I end up define, let say I design a function call int date::season. This is supposed to

be written 0, 1, 2 or 3 depending on whether it is winter, spring, summer and autumn. Let

say that is what we want to do if you do int date::season; it means you are looking at a

function called season which is a method inside this class called date. However, the class

called date does not have a method called season. The compiler will catch it and tell you

that it is an error.

(Refer Slide Time: 21:25)

So, this notion of public and private is a useful distinction to make. We do not make

everything public by default because by keeping things private, we can provide a very

clean interface and we can also maintain things which are supposed to be invariance.

What is the validity of the data inside, we can maintain the invariance. This can also help

in debugging programs because if you manipulated something and if something went

wrong, it could have happened only through functions that can manipulate the variables.

It could not have happened through something else which is outside. So, you can go and

round up the usual suspects essentially and say that if manipulations happened, it

happened only through these methods and there is something in these methods which is

incorrect. You will also see that it allows you to change the internal representation. The

notion of a class allows you to change the internal representation. This is something that

you will see in a lot of detail in a later class when we talk about the notion of adt and

data structures, right.

So, as an adt for a list, I could use a link list internally or it could use an array internally.

The notion of a list is just a sequence of elements. I could have used an array internally

or I could have used a link list internally. This kind of implementation detail can be

hidden from somebody who just wants to use a list and this is possible if you use classes.

(Refer Slide Time: 22:58)

So, many times we go and look at what makes a good interface. So, we define classes in

such a way that an interface is minimal. It should be as small as possible and at the same

time, it has to be complete. So, it has to be small, it has to be small enough to do all the

basic things, but not any smaller than that. It has to be the smallest and elegant set of

things that you want to expose to the internal world, to the external world I mean and it

has to be safe. So, you do not want to have the arguments passed in a different manner

and ensure that it is type safe.

(Refer Slide Time: 23:36)

So, let see how to define the link list in a C plus plus way. This is what I was promising

earlier, right. So, to define link list in a C plus plus way, you would do something like

this. We define a class called node. This is very similar to a structure, right. So, we had

struct node data and next, here we have class node where the private members are data

and next. We also provide public methods. Let us look at the public methods. You have

set data and set next which will let data and next to be changed, and we have data and

next which will do the get. So, these two methods give you put access to node, right. So,

you are allowed to change with these two and you are allowed to read using these two.

There is another method called node which is the constructor for class node. This is not

doing anything. So, it is not changing anything at all. So, it is not setting of anything. So,

this is the basic class and we are going to use this class inside the link list.

(Refer Slide Time: 24:43)

So, what is the link list has? The link list has a node called the first node, right. So, the

link list has a first node and it supports various operations like print, append, delete and

so, on and it has a constructor called list. If I want an initially empty list, all it supposed

to do is ensure that there is no valid node that is pointed to from it. So, first equals null

and that is it. So, now, you can see that the notion of a link list becomes much cleaner,

right. So, if we want to manipulate anything in the list, you have to go through these

functions here; append, delete and print. You cannot go and access first directly because

by default first is private. You cannot access first directly. You can only go through the

interface functions namely print, append and delete.

(Refer Slide Time: 25:38)

Let see how a print method would look like. So, the implementation of print would look

like this. So, node star temp equals first. If temp itself is null which means it is an empty

list, you may want to print empty on the screen. If temp, if there is only one node in the

list, then the first nodes next will be null. We actually do this not using the next field, but

we call the method called next temps next. If that returns null, then print the character

which is contained in temp data and then, followed by arrow null. Otherwise we run a do

while loop which prints one character at a time and the way do we do that is, we do not

access the data element or the next pointer of the nodes directly. We call the methods

temp data and temp next to that and we keep doing this till we hit the end of the list.

So, this basic loop takes care of reading one element at a time from the nodes and

printing them based on whether there are only zero elements or one element or more than

one element. So, this is clean because any one who calls print does not have to worry

whether it is an empty list or does it contain one element or more. So, the print itself

takes care of the implementation. The detail is hidden from the user. So, the user can just

call print and be done with it.

(Refer Slide Time: 27:19)

Let see append to the list. So, for appending to the list, we are trying to add an element to

the end of the list. So, we create a new node, we set it to the data that is passed. So,

append is supposed to take a data and it sets the data to the last and sets the next pointed

to null. So, you create a new object of the type node and you start with a temporary

variable here which points to first. If the list is empty, then you just make first equals

new node because there is nothing else to do. You created a new node and the first

pointer will point to that. However, if it is not an empty list, then we keep moving the

pointer till we hit the end of the list at that point we insert it. So, this kind of a set up

where we traverse the list and. So, on is completely hidden from the outside world, right.

So, let me explain what I mean by hidden from the outside world by showing how the

program will look like.

(Refer Slide Time: 28:21)

Let me write a small program which shows how clean this notion of classes makes the

whole program. So, I want to create a new link list and I want to add elements a, b, c and

d and may be at a later point of time, I want to even delete the element b in the list. So,

here I declare a variable call list or an object list which is of the data type list and this

appends a, b, c and d is going to add these characters a, b and c and d to the list. Let see

how the syntax is. So, list is an object. When I say object dot append, this object is of the

data type list. So, it is going to find out if there is a method by the name append; and

what does it take. Append takes that data type character. So, we are passing a character

and list dot append will add a to the list. At this point of time, this list is empty. We do

not have to worry about that.

We just said list dot append of a, and the first time append is called, inside here you

create a node. This would be not true. You would just change the first point out in new

node and maybe we can print it. Even as soon as you create list with one node, you can

print it and then, we do list dot append of b. At this point the list already contains a, and

now the method will look at this is not the first node. So, it will go through the list, find

out that the null is pointed from a. At that point, it will be added. So, a will now point to

b. If you do this, b will point to c and when you print, you start from the first pointer,

print a, print b, print c and. So, on and go to the end. Now, you can append d. So, the list

will have a, b, c, d and finally, if you call list dot delete of b, if there is a function

implemented by the name delete, we assume that programmer has already taken care of

that. The classes designer is taking care of print append and delete as a user of the class.

So, when I said user and programmer and. So, on till now I am talking about user of the

class, right. So, the user of the class, as a user I want the link list. I do not want to worry

about how the list is implemented, how append is implemented; delete is implemented

and. So, on. I leave it to the designer of the class and this delete of b if there is a function

defined by the name delete, I will assume that gets done and list dot print I will expect it

to print a, c and d.

(Refer Slide Time: 31:22)

So, what did we get? The details of the implementation of append, delete and creation of

the list and. So, on are not exposed to the user of the class. The main program became

much cleaner. See this is much cleaner than making function calls to append and

checking whether this is the first and second and. So, on. We did not do any of that. This

becomes much cleaner here, and we trust the implementation of the class list to be

correct and complete. This is something that we get from the implementation of a class.

This is the reason why we use C plus plus in the data structure lectures that are

following.

(Refer Slide Time: 32:00)

So, in the lectures on data structures, you will see syntax of C plus plus. So, do not be

bogged on by the syntax of C plus plus. Just remember that you have individual

members that are going to get operated on or manipulated. You will either change the

values of the members, or you are going to read the values of the members. You will see

that there are public methods that are used to manipulate the individual members, and

you may also see private methods which are only called by public methods, and you will

see that the methods are actually invoked using the dot operator. For example, the link

list append would do my list dot append of x or you have my birthday dot month and so,

on. So, do not be surprised by functions being called with the dot operator. So, all you

need is the basic syntax of C plus plus which shows that there are classes which has

internal members and internal methods. They may have public members and public

methods, and the members and methods are going to be used just like you do it for

structures using the dot operator..

So, beyond this you probably do not need much of C plus plus and as I mentioned

earlier, we are not going to do anything more than that in this lecture. So, I said this is

not a completely justified introduction to C plus plus. I have done just enough. So, that

you can appreciate the slides that are following or the lectures that are following on data

structures. So, if you need C plus plus, this is actually a completely new course that you

have to do, where you start with the syntax and semantics of C plus plus and also,

understand how to do object oriented design. Since, this course is objective, the basic

programming and data structures and algorithms; we will not touch up on C plus plus in

any further detail.

So, thank you and this brings me to the end of this lecture.

