
Programming, Data Structures and Algorithms

Prof. Shankar Balachandran

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture – 04

How a Program Runs

Assignment operator

Variables and constants

Variable declarations and data types

Arithmetic operators in C; Precedence

Increment and decrement

We use this 7 variables a, b, c, d, p 2, p 1, p naught and these are called variables.

(Refer Slide Time: 00:12)

So, every memory location is given a name. So, if you have a variable you use a name

and this name is something that you gives so, that you can remember what it is about and

in turn this variable name is attached to a memory location, when you run the program.

So, the name is,. So, when you say a the variable name a, you are actually referring to the

value at location that we are going to call a. And when you say a times b, it is actually

going to take the value at location a and value at location b and multiply them together.

So, the name is actually referring to the data and you usually have names which make

some sense to you. So, it could be roll number, class size or in our example we use p 2, a,

b etcetera. So, these variables have some kind of data type attached with them. So, in our

example we expected a, b, c, d to be integers or we wrote the program to be in such a

way that they are integers and p 2, p 1, p naught are also integers.

So, because they are integers they cannot have something like a string, let us say it can

not have my name assigned to a, a equal to Shankar does not make sense, a should be a

number. Then, all the data internal to the computer is actually represented as a sequence

of 1s and 0s of some particular size or some predetermine size, which we will call word.

So, this integer is supposed to be of certain number of bytes and usually integers of size

4 bytes.

(Refer Slide Time: 02:04)

Then, there are these various operations that we did. So, if you look at a times c which is

assigned to p 2, then the star is an operation, the assignment itself is an operation and so,

on. So, instructions take the data that is stored in the variables as arguments and some of

these instructions actually perform operations. For example, if I do x equals x plus 1, it

takes the integer x add 1 to it and the result is then put back in the same location x.

And some other instructions actually do change the order in which the program is run

and these are called control instructions, we will see them in a little more detail later. So,

I want you do look at this x equals x plus 1 in little more carefully. So, if you do basic

algebra you may be confused about this statement. So, let us say x equals x plus 1 is

written in a C program and you look at it, if you do basic algebra from a 6th grade or 7th

grade, you would cancel x on both the sides and you would be looking at 0 equals 1.

So, but that is indeed not the case. So, the assignment operation is something which is

different, do not read the sign equals to as though it is an equality. So, the way it should

be looked at is, it is a statement it has to executed and the way it is done is, you execute

whatever is on the right side, you get a result from there, you take that result and put that

result on the variable on the left side.

(Refer Slide Time: 03:41)

So, let us look at the program, a program is a sequence of instructions. Normally, the

processor will work in the following sequence of steps. Step A would be pick the next

instruction in the sequence, then step B would be get data that is required for the

instruction to operate upon, execute the instruction on the data. So, if it is star then you

do multiply, if it is plus you add and so, on. And a step D would be take it and store it

back as a result somewhere, it could be either a memory location or it could be some

internal storage, like 4 and 6 were stored in our steps and finally, go back to step A itself

look for the next instruction and so, on.

So, this is going to be repeated in a loop. So, you pick the instruction, you pick the data

that is required for it, you do the operation, store the result, go back and pick the next

instruction and keep doing this till there are no more instructions for the particular

program.

(Refer Slide Time: 04:42)

So, let us look take a careful look at what the assignment itself means. So, this equality

or the equal symbol that you saw is called the assignment operator. So, when you see p 2

equals a into c, you multiply a with c and the result is assigned to the variable on the left

side called p 2. Therefore, we call this equality an assignment operator, it takes the value

and puts it in the memory location p 2. Therefore, it is doing an operation which is a

memory operation, in this case it is a memory write operation, you are writing to

memory. So, it is an assignment operator.

So, the value of a variable could be modified due to an assignment. So, the way it works

is the left hand side is the variable to be modified and right hand side is the value to be

assigned. So, you have variable name equals value. So, if you have a equals to 1 as the

assignments statement, then 1 is the value that get’s assigned to a. If you have a equals to

c, c could itself be another variable, you do not copy the character c into a, instead you

go and look at the variable called c, look at the value that c contains and copy that value

into a.

If you have something like a equals a into b plus d by e, then you actually take the

variable value contained in the variable a, multiply that by the value contained in the

variable b, store it temporarily. Then, take d and e the values contain in these variables

divide d by e, store it again temporarily at these two and put it back the memory location

a itself. So, the process is the right hand side is evaluated first. So, you would evaluate

this right hand side first and after completing and only after completing all the operation

on the right hand side, the assignment operation is perform this will write the result back

on to the left hand side.

(Refer Slide Time: 06:42)

So, variables and constants are two typical things. So, this is where I want to brink this

distinction between, what is a variable, and what is a constant. So, a variable is

something that can change during the execution of a program, where as a constant can

not change it is value during the execution. So, you look at a equals 1, a is a variable

here, 1 is number 1, number 1 is not going to be change during the execution of the

program. Therefore, 1 is a constant and a is a variable.

So, the variable names are made up of letters, digits and underscore. So, these are called

identifiers. So, for different memory locations you give different identifying names, just

like we have names, variables are the names for the memory locations. And the variable

names are what are called case sensitive, what that means, is upper case or capital letters

are different from lower case or small case letters.

So, if I use the variable name called class size with a capital S, it is going to be different

from a variable called class size with a lower case s. So, these two are two different

variables, which means they will get two different memory locations assigned to them.

And the maximum size, that you can have for a variable name is 31 letters, you cannot

have more than 31 letters for a variable. The first character for a variable that you have,

that you write must be a letter, it cannot be underscore or it cannot be a digit it has to be a

letter.

Typically, you use a meaningful and self-documenting name for the variables. So, for

instance let us say I want to use pi or pi. So, pi is a constant, pi is not going to change it’s

value, it is going to be 3.141 and. So, on, it is a constant. So, usually constants are given

names which are all capital letters, whereas variables are given names which are usually

a mix of lower case and upper case letters.

And then there or key words are words that are reserved by the programming language,

we already saw if statement in module 2, there are also other statements, other key words

like for and so, on, we will see them later. So, these are not names that you can assign to

your variables, you cannot have a variable by name if or for or else or float or int or

while and so, on.

(Refer Slide Time: 09:15)

So, the variable declaration goes as follows, once you declare you get storage already

showed that in the animation. Declaration is the general form, you have the data type

followed by the variable name or a list of variable names. The various types that are

allowed are integer, float, character and double, int is for integers. So, you can only store

integral values in them, float and double are for real values and you can store a dot

something is a 5.34, 3.14 and so, on, char is for character it can store a single letter,

single letter like a, b, c, d or such things.

So, if you look at the statement int x semicolon, what it really does is you have a variable

by name x and it is of data type integer. And there is a memory location, which is labeled

x for this execution of the program, it assigns a creation number of bytes for this.

Whenever, you use the variable x in your program, it will during the execution this value,

which is contained in this location x is used.

(Refer Slide Time: 10:28)

So, we actually use the term variable, because the value of a variable can change during

the execution of the program. So, a program is essentially a modification of variable

values. So, for instance even the variables a, b, c and d they had some unknown values

initially and they changed only when the user input those values. Similarly, p 2, p 1 and p

naught, were unknown values initially and they changed once the operations on the

respective right hand side where over.

So, each C program is a modification of variable values and the modification can happen

due to operations like, plus, minus, slash which is for division, star for multiplication and

so, on. These variables can also change values, because of functions or operators

provided by the system. So, for example, I could say a equals sin of x. So, x would be

treated as a parameter to the function called sine, sine is a built in function in the math

library, it will do sinusoid or sine of x. The result of sine of x will be stored in this

variable called a or this variables can change due to some functions itself, which the

programmers create. We have not written any such a functions yet, we will see them as

we go along.

(Refer Slide Time: 11:53)

Let us look at the kind of operators in C, there are four basic operators for arithmetic

namely, plus, minus, star and slash, they stand for addition, subtraction, multiplication

and division respectively. You can use these operations against integers and floating

point numbers. So, plus and minus for integer and floating point will just add the values

or subtract the values, star and slash have a little bit of meaning or a change in meaning

when you attach them to integers as opposed to floating point.

When we do integer division, the fractional part of the result is truncated if you do

integer division. So, for example, 1, 2 or number 12 is an integer and number 5 is an

integer. So, if you write 12 slash 5, you are dividing 12 by 5 and even though the result is

2.4, this 0.4 is truncated. So, the result of dividing an integer by another integer, this is

also an integer in this case it is only 2.

So, a more drastic case is, if you divide 5 by 9 for example.. So, 5 is smaller than 9, so,

when you divide 5 by 9 you have a fraction and know integer value. So, the result would

be 0. So, you have to watch out for this, when you program, but for now this is not a

problem and then there is this modulo operator or percentage. So, this percentage if you

write x percentage y on the right hand side of assignment statement, what it will do is, it

will take x and divide it by y.

But, instead of putting the quotient it finds out the reminder. So, a by b finds out the

quotient and a percentage b finds out the reminder. So, this is for integers. So, of course,

for floating point numbers a percentage b does not make sense, you can take any floating

point number, divide by another floating point number and you can always get a

coefficient with the modulo being 0. So, this is called the modulo operator, because it

finds out the remainder. So, percentage is defined only for integers, it is not defined for

floating point.

(Refer Slide Time: 14:12)

Let us look at these operators, if you look at operations just like in when you write

expressions in your basic algebra, there are rules that you have to follow the rules of

precedence. So, even in our example we had a times d plus b times c which was return as

a into d plus b into c. So, what is the order in which things are done. So, the first

precedence is for parenthesized expressions, the next precedence is for star and slash and

modulo and the last level of precedence is for plus and minus.

So, to illustrate what I mean by that, let us take this expression, this complicated

expression a plus b times c plus d and c times d and so, on. So, if you are not careful you

may end up doing something like this. So, let say I start looking at it from the left side, I

see a plus b I take a and b first add it and then I multiply the result by c I take the result

multiply by d take that result find the modulo by e and so, on. But this is not the way in

which we do this in algebra either.

So, in algebra if an expression like this is return, then you do not do the addition first,

you go and look for higher precedence operations first followed by lower precedence

operations. So, the numbers that you see on the right side or not the values attached to

these variables, instead that indicates the order in which the operations will be done. So,

if this expression is given to you, the very first operation that will be done would be b

times c. So, this star is the very first operation that will be done, the result of b time c

will be store temporarily somewhere, that result will be multiplied by d. So, this star is

the second operation that will be done. So, now, you have b times c times d the third

operation that will be done is percentage. So, b, c, d percentage e will find the remainder

of dividing b, c, d by e. Once that is done, then the next operation that is done is plus.

So, you will do a plus that whatever is in this expression here then finally, you do this

division followed by the subtraction. So, this is the order in which things will be done.

So, if you are looking for a parentheses expression which is equivalent to this, this

should be the parentheses expression. So, you start with b times c the inner most thing is

the evaluated first, then you have that times d, then you have that modulo e.

So, you will have a result from here that will be added to a and you do f by g and this

whole expression will be… So, this f by g will be subtracted from this whole expression

on this side. So, it is missing one parentheses here, so, we expect a parentheses to be

here. So, this is the order in which thinks are done. So, use parentheses all way if you are

in doubt, until you get familiar with the order of precedence. So, star slash and

percentage has higher precedence over plus and minus and parentheses has higher

precedence over star slash and plus.

(Refer Slide Time: 17:56)

So, let us see another example here,. So, a times b plus c percentage 5 plus x by 3 plus p

minus r minus i, it look complicated enough, it is also not a very good thing to write. So,

I am giving it only for illustration purposes, you should not be writing such things in

your programs. So, the evaluation order is b plus c and 3 plus p would be done first,

because of the brackets that you have around them. And once you have it, star slash and

percentage have the same precedence and you have star and percentage here.

So, star comes before percentage in the program order, if you look at it from left to right

star comes before percentage. So, star will be performed before the percentage. So, a

times b plus c is evaluated and then you do it modulo 5 over it. Similarly, when you have

x by 3 plus p, 3 plus p is evaluated already is you will do x by that, at the end of it you

will have some value for this whole expression, some value for this whole expression

minus r minus i.

So, now you have only pluses and minuses you simply go from the left to right side and

you will do this plus that, the result is then, you remove r from it and then you remove i

from it. So, that will be the order in which you do things. And finally, the whole

expression is evaluated and you have a value at the right hand side, that value is assigned

to this variable called value which is on the left hand side.

So, equal to is the only operator that violates the left to right rule. So, star you do the

calculate term something on the left side before you calculate something on the right

side, percentage also you evaluate something on the left side before evaluate something

on the right side. But, for the equal to operator you need to evaluate the right hand side

get it completely evaluated and then the result is assigned to the left hand side.

(Refer Slide Time: 20:02)

Let us look at a few other operators that are useful and very common in C and increment

and decrement operators, these operators which are actually unusual not uncommon

unusual. So, for example, this plus plus, see if you do a plus b it is addition of a and b,

but if you do a plus plus it is actually equivalent to a equals a plus 1. So, plus plus means

add 1 to the operand and minus minus means subtract 1 from the operand.

So, let us look at this small example n plus plus would mean, you take n add one to it and

put the result back in n itself. So, it will increment n after the use of n, whereas plus plus

n means increment before the use. So, let us see how this can be useful in an expression,

how it can be used in an expression n equals 4. So, there is a right hand side which is 4,

the left hand side as n, there is nothing to do on the right hand side it is a constant. So, 4

is assigned to n. So, there is nothing to do there, then let us look at this statement x

equals n plus plus.

So, what we have here is this plus plus is a post increment operation what; that means, is

use the current value of n, assign to the left side and then comeback and change the value

of n. So, in this case if n equal to 4 was already executed, the current value of n is 4 it is

assigned to x and then n is incremented to 5. So, at the end of these two statements n

would be 5 and x would be 4. Then, if you have this third statement y equals plus plus n,

n has a pre increment operator, which means n should be incremented before the use in

the right hand side.

So, the current value of n is 5, you pre increment the result is 6 and that result is given to

y. So, after the execution x would be 4, because you use the value before you

incremented n, y would be 6, because, 2 increments happen before you assigned it to y

and n would be 6, because n got to increments one as a post increment here and one has a

pre increment here. So, remember the memory layout there are three variables n x and y

which means there are three memory locations n x and y. And mentally simulate how this

read and write on the memory is happening, involving the ALU. So, just remember that

whenever you have a post increment, read assign to the left side and then do this

operation. Whenever you have a pre increment, do the operation first and then assign to

the left hand side so, it is as simple as that. So, we looked at the notion of variables and

we looked that the notion of what the memory layout is, we also looked at what the

various operators in C are the basic arithmetic operators and we looked at a small

program.

(Refer Slide Time: 23:25)

So, I want to show something small about the code before I wrap up this session lecture

1. So, I am going to run this program, we already had this program, I am going to run

this program, we did int a, b, c, d int p 2, p 1, p naught I am going to run this programs.

So, let us what I am going to do is, I am going to run it with an unexpected input. So, I

expect integers a, b, c and d to be given integral values, what if I violate that.

So, what I am going to do is, I am going to take two polynomials 1.5 x plus 1 and

multiply it with 1.5 x plus 1 itself. So, I will try 1.5 and right away I have some result

here with says the product is something, it did not even give me a chance to enter b, c, d

and so, on, it gave me some product and clearly this is not what we expect. So, the

variables a, b, c, d were integers and by just giving the input 1.5 somehow it got values

for b, c and d incorrect values of course, and it gave me some polynomial here as a result

also.

So, something bad happened here. So, will sit down and reason about this at a later point

of time. So, this is just a show you that in module 2, we looked at some values that I gave

to the program and for a, b and c it still gave me correct results. But, it is not because that

it got the correct values in place, something else happened there will sit down and reason

about that at a later point of time.

But, this is a program where entering a wrong data type 1.5 is a floating point, I gave it

when an integer was expected and the program so, called crashed, it gave me something

which is unexpected. So, with this we are at the end of lecture 1. So, see you in lecture 2.

