
Programming, Data Structures and Algorithms 

Prof. Shankar Balachandran 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Module -11A 

Lecture - 36 

What is a structure? 

Example: Points in a plane 

Accessing members, More examples 

Nested structures: point, line, triangle, rectangle 

Defining new data types: typedef 

 

Hello, welcome back all of you. I hope you have been enjoying the lecture. So, far and 

you have been putting in some time to work on the home work exercises as well. So, in 

this lecture we are going to look at what are called structures. So, we looked at one kind 

of aggregate data type called arrays earlier and in this class we are going look at what are 

called structures. 

(Refer Slide Time: 00:35) 

 

So, structures as arrays are a collection of one or more variables. So, you have one or 

more variables,, but as opposed to arrays structures can have different types group 

together. So, if we look at an array right it is an aggregate type of the same data type. So, 

I can have an array of integers or array of floating point numbers and so, on, where as 

structure let us you aggregate data which are even of different data types. 

So, let us take for example, point in a two dimensional plane, a two dimensional plane 

will have an x coordinate and a y coordinate. And you want to keep this group together, 



because that is what a point is and one way to do that is as follows. So, you have a 

something called a point which we call a struct. So, struct is a keyword in C, we say that 

point is a data type which has two things, some integer called x and another integer 

called y from now on point can be treated us a new data type that you created in your 

program. 

So, this is something that is absolutely new for your setup so, far. So, far we have been 

using all the data types that are already in place, like int and float and character and so, 

on,, but for the first time we are seeing, how to create your own data types. So, we have 

created a new data type called point which has x and y has two members inside it. So, by 

doing this you get a mechanism for defining compound data types as of now, you do not 

have a storage this is like saying I have an integer. So, only we need do something like 

int a comma int b and so, on, you have variables of the names a and b just by having int 

in it you do not have a storage space. Similarly, when we have the basic data type called 

struct point, we are saying that this structure is going to have two things an integer called 

x and an integer called y, that is group together. And this collection is useful instead of 

looking at as a two different integers, this collection is going to be for a representing a 

point. 

(Refer Slide Time: 02:47) 

 

So, let us look at this a point in 2D is now two integers, there are different ways to 

declare structure variables. So, let us look at this top part, you have a struct point int x int 

y and we have these braces closing it followed by point 1 and point 2. So, the way it 

interpret this is point 1 and point 2 are two variables of the data type called struct point 



and the struct point data type has two integers in it x and y. So, this is one way to do it. 

Or if you have already defined only the structure without doing declarations for the 

variables, we can declare only this part saying that my point is a data type containing two 

integers, you could leave it at that and then come back and say that I want two variables, 

point 1 and point 2 they are both of the types struct point. So, if you look at this line it is 

quiet similar to what we have done for integers and floats and so, on. 

So, on the left side you start with the data type and then you have a comma separated list 

of variable names, only that the data type has, is keyword struct in front of it and in name 

that we have assign to the data type. So, at this point the storage for point 1 and point 2 

are allocated. So, point 1 will have two integers and point 2 will also have two integers, 

there is one way to initialize this, that is in the last line here struct point point 1 is 3 

comma 2. So, at this point you are saying that point 1 is of data type struct point. 

And since there are two members x and y, the two members will get the values 3 and 2 

respectively. So, that is one way to say that point 1 should have it is x as 3 and y as 2. So, 

this is also very similar to what we have for basic data types, where we say int x equal to 

5 for instance would mean, you are not only declaring a variable called x, you also have 

the storage declare for it plus the initialization of the value to 5. 

(Refer Slide Time: 04:56) 

 

So, let us see how to access the individual elements x and y are called members and 

referring to the members is done with what is called the dot operator or the period. So, 

point 1 is a variable, point 1 dot x will give you the x coordinate and point 2 dot y will 



give you the y coordinate of point 2 and so, on. So, let us see this small piece of code, let 

us say I want to print point 1 on the screen. So, printf point 1 percentage d percentage d 

print point 1 dot x and point 1 dot y. 

So, this statement will look at point 1 dot x the x member of point 1 and print it as an 

integer and look at the y member of point 1 and print it as an integer. So, that is what this 

line does, it is not just you can use them for printing. So, you have read the values of 

point 1 and point y, you can also go and change the contents of point 1, you can also 

write to it. So, point 1 dot x equals 0, point 1 dot y equals minus 10. 

So, this one changes the value that you currently have two a point called 0 comma minus 

10. So, it could have been something else before and now you could change it to 0 

comma minus 10. So, one small thing that you have to watch out for is that, you cannot 

access point dot x and point dot y, remember point is a data type point, the data type does 

not mean that you already have storage, only when you have a variable of the certain 

data type you are allocated storage. 

So, you can only use instances of the structures, namely the variables it you have used 

and not the original data type itself. So, point 1 dot x is point dot x is not point 2 dot y is 

point dot y is not, it should also know that point 1 dot x and point 2 dot x are actually 

two different variables, they have two separate memory locations and they do not get 

mixed up. 

(Refer Slide Time: 06:56) 

 

So, let us see various other examples of structures. So, one classical example is of a 



student who has a student id and as a educational instantiation am I want to track, what is 

the age of the student is the student male or female and what is the students CGPA and 

so, on. So, this is one logical group of things, I have the student id and along with the 

that I have an integer called age, I have a character I would probably put m or f 

depending on whether the student is male or female and the CGPA is usually floating 

point number. So, I am going to keep it as a double CGPA. 

So, this is the logical collection of things, instead of keeping them as four separate 

integers if I have it as a structure. So, this collection has a meaning. So, it is all the 

information about a student and we call this information here student info. Similarly, if I 

am going to look at a date, I have three things that are that make a date, the day, the 

month and the year, we need all these three. 

Again I could of kept it as three separate integers,, but putting all of them as one logical 

unit make sense. Because, then I can look at is today this date or setup today's date to be 

this and so, on, instead of dealing with three separate integers which have no relationship 

to each other. 

(Refer Slide Time: 08:13) 

 

Finally, let us look at another example called bank account. So, this is a suppose to have 

details of a bank account. I of course,, have the name of the person who has the bank 

account, in this case you have name which is a character array of 15 bytes. So, the name 

can be up to 15 bytes, then there is an integer account number in this case account 

number is expected to be integral. And the balance that you have in the account is 



suppose to be a double value and am I want to track the birthday of my customers and 

that in turn is a structure. 

So, this is what I was talking about earlier that you could actually mix and match data 

types of different kinds and through them into a structure. So, in this one we have a 

character array of size 15 and integer, a double and within a structure we have another 

structure called date or birthday. So, there is a member called birthday whose data type is 

struct date. So, date I already mention has three members. So, in some sense we have a 

nested structures here. So, we have a structure called structure date within this structure 

called bank account. 

(Refer Slide Time: 09:25) 

 

So, this kind of nesting is really useful. So, let see another example here let say we have 

a rectangle and I want the rectangle to be a data type by itself,, but the rectangle is 

specified by the left bottom point and the right top point. So, I have two different points 

that define the rectangle, namely the left bottom point and the right top point and 

rectangle itself is a data type. So, this is useful for example, I want to go and draw the 

rectangle I will pass this structure called rectangle to the draw function if. 

So, let us look at this struct rectangle. So, it says that we want a new data type called 

rectangle and this in turn consist of two members, namely pt1 and pt2, pt1 is struct point 

data type and pt2 is also struct point data type. And somewhere we have to remember 

and know that pt1 stands for left bottom corner and pt2 stands for right top corner. Now, 

if we want to access something in this nested structure you could do this. 



So, rect1 is a variable of type rectangle, you can see the declaration here the data type is 

in the top and rect1 is the variable of the type rectangle. So, rect1 dot pt1 dot x refers to 

the variable rect1 it has two members pt1 and pt2 and the pt1 member has x as one of its 

member. So, you are looking at member of a member and you want that to be set to 4 and 

rect1 dot pt1 dot y to be set to 5. So, this sets of the rectangle to have the left bottom 

point as 4 comma 5. You could also do this, rect1 dot pt1 is 4 comma 5, we already saw 

this example, only that we have a nested structure case. So, rect1 dot pt1 the x member 

takes the value 4 and the y member takes the value 5. 

(Refer Slide Time: 11:24) 

 

This notion of nest nested structures is really useful to construct a lot of things, let us do 

this example one more time, similar nested structures. So, we have a struct point which 

has two members x and y and I have a variable p of the data type point, then let us say I 

have a stuct line which takes two points. So, a line in a two dimensional plane is defined 

with respect to two points and I have these two points, this blue line here is line l and line 

l has p 1 and p 2. 

So, this point here for line l which is p 1 is x coordinate is l dot p 1 dot x and the y 

coordinate is l dot p 1 dot y, this point here is p 2 of l it is x coordinate is l dot p 2 dot x 

and its y coordinate is l dot p 2 dot y. Similarly, I can make a triangle and I have to 

specify three points for it. So, the data type is called triangle and the variable is called t. 

So, t dot p 1 dot x and t dot p 1 dot y is one of the corners of the triangle and there are 

two other corners namely p 2 and p 3. 



(Refer Slide Time: 12:44) 

 

So, let say I want to setup point p to have 4 comma 11, line l 1 to have 2 comma 7 going 

to 10 comma 9 and triangle with these three as coordinates, how do we do it. So, this is 

how do it we first say that there is struct point p, we already have struct line l and struct 

triangle t, it is assume that these declarations for p l t are in place and now we have 

variables p l and t. So, to make this point p to be 4 comma 11, we can say p dot x is 4 and 

p dot y is 11 and for making the line 2 comma 7 to 10 comma 9 l dot p 1 dot x is 2 and l 

dot p 1 dot y is 7 takes care of this point l dot p 2 dot x equals 10 and l dot p 2 dot y 

equals 9 takes care of this point. 

So, we have two points and for each point we are given the x coordinate and y 

coordinate. And finally, for the triangle will we need three points and for each point we 

give the x and y coordinate. 



(Refer Slide Time: 13:55) 

 

So, this defining new data types is a very useful and powerful thing and sometimes it 

gets very tedious to say that it struct rectangle and struct pt and so, on and C 

programming language gives you this short cut called typedef. So, typedef is use to 

create new data types for example, let say I have an integer and the meaning that I want 

to attach the integer is age. So, you do not want to accidentally mix it with something 

which is of type let say volume or something which is of the type date and so, on. 

So, this is age and it is an integer, if I just say it is int I could accidentally use this 

variables somewhere else. But then, now what I am going to do is, I am going to say age 

is typedef to be an integer. So, what I mean by that is, wherever I see age as a data type 

intern it is actually just an integer. Now, if I declare age my age equals 99 it is clear that 

my age is of age data type and I do not want to mix it with things like, volume or length 

and so, on, it is actually about age. 

So, this combination of doing typedef is particularly useful in structures. So, for 

example, I could. So, we were using this struct point struct point and so, on repeatedly. 

Now, I am going to use a short cut, which says typedef struct point point type. So, what 

this does is it defines a new data type called point type, which is actually a struct of type 

point. So, it is a structure of type point and the nick name for that is point type. 

From now on I can avoid saying struct point point 1 and so, on and instead I can say 

point type point 1, point 2. So, in the last line here we can see that this is very similar to 

what we have do for basic variables, we put the variables data type first and then a 



comma separated list. Only the variables data type does not have this extra thing called 

struct followed by the structure name, instead it has this nick name called point type. So, 

this is actually equivalent to writing struct point point 1 and point 2. So, it avoids typing 

this struct point every time. 


