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So this lecture is on algorithms for sorting, and the focus of the lecture is going to be not 

just in the algorithms, but the sequence of steps that go into arguing that the algorithm is 

indeed correct and analyzing the running time. 
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Another simplest algorithms to sort a given data set, and in this case we assume that the 

input is given in an array of size n, with the elements are a of 1 to a of n. The data type of 

the elements in the array is not so important for the rest of the presentation, as long as it 

is clear that there is a very clear order between every pair of elements. The output of 

sorting algorithm is to sort the array in ascending order, and insertion sort is a very 

simple and popular algorithm to understand the challenge of sorting. The approach that is 

taken by insertion sort, is the following. It is an iterative approach, which means there is 



a loop that is running n times. Recall that n is a number of elements in the array that need 

to be sorted, and at the end of every iteration. Let us say at the end of the ith iteration, the 

invariant that is maintain by the algorithms, is that the elements form the first i elements 

in the array; that is elements a of 1 to a of i are sorted in ascending order. Further in the 

ith iteration, the elements a of i is inserted into the correct location, among the elements a 

of 1 to a of i minus 1, and thus this invariant is maintain one iteration after another. This 

kind of guaranty is the correctness of the insertion and sort algorithm, to sort an array of 

n elements. 
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Of course is challenge here, is to understand how the insertion happens. Recall that in the 

previous slide we mentioned that, in the ith iteration the elements a of i is inserted into 

the correct location, so that a of 1 to a of i is sorted. Given that a of 1 to a of i minus 1 is 

sorted when the control enters the ith iteration. So, how does one insert a of i. One can 

look at the step by step procedure. We said first j to be a temporary variable, and then 

whenever j takes the value one you exit. We will see what the motivation for this 

condition is, and as long as j is more than one; a comparison is made of the elements a of 

j and a of j minus 1.  

In other words, the elements which are in the array locations j and j minus 1 are 



compared, and if a of j is smaller than the a of j minus 1. Then there is an exchange that 

is effective, between the elements and the location j and j minus 1. And now j is 

decremented by one and then we repeat this procedure all over again. Indeed it is also 

possible that the elements at the jth location is at least as large as elements at the j minus 

one th location in which case, it is clear that a of j is the correct place, given that the rest 

of the elements are in sorted order. At this point of time the control exit's, and now we 

can report that the elements a of 1 to a of i are in sorted order.  
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In other words we achieve the goal of inserting a of i into the correct position, which is 

look at this pictorially, this is taken from corner license and drive is standard text book. 

And let us look at the starting array, which is array index by the letter a and observe that, 

there are six elements in this array which sort out as 5 2 4 6 1 and 3, observe that in the 

first step. In our cases would be the second step the way of presented the algorithm, the 

elements two and five are exchanged. In the array index by the letter b, observe that the 

first two elements are in sorted order, and the elements four is not being inserted into it is 

correct position, and this is required a single comparison with four and five, but of 

course, the comparison with two should also happen. 

Therefore, it actually requires two comparison. Similarly if you look at six, six is larger 



than five and this one comparison keep six exactly where it is, and then observe that one 

is no inserted into the correct position after four exchanges, six first exchanged with one, 

then five with one then the value four with one, and finally, the value two is exchanged 

with one. Similarly three now is move to it is inserted into it is correct place in the figure 

index by the letter e. At the end of this whole procedure we find that the array is in sorted 

order. This is essentially the idea behind the insertion sort, and one can even imagine this 

as a very natural way of arranging a deck of cards 
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How does one guarantee the correctness of the insertion sort algorithm. The way to 

guarantee the correctness of the sorting algorithms, is to know argue that in the ith 

iteration the elements a of i will move to it is correct position, among the elements a of a 

of one to a of 1 minus 1 within i comparisons. In other words we prove this by induction. 

We observe that at the end of the ith iteration the elements a of 1 to a of i minus 1 are 

sorted in, a of i are sorted in ascending order. We prove by this induction on the value of i 

observe then when i equal to 1 which is the base case, the array just cons containing a of 

1 is just in sorted order. So, let us assume that a of 1 to a of i minus 1 are sorted in 

ascending order, and let us complete the induction step. So the hypothesis now is a of 1 

to a of i minus 1 are sorted in ascending order. Now a of i let us assume that a of i is now 

inserted between the elements a of j and a of j plus 1. So, let us look at the indices, that j 



can take. J can take a value between 1 and i minus 2, and where ever it is inserted. On 

termination it is clear that a of i is at least as large as a of j and a of i is less than or equal 

to a of j plus 1. In other words, as the algorithm progresses, the prefix of the array which 

is sorted, it is length keep increasing, iteration by iteration. Consequently at the end of 

the nth iteration it is clear that the elements a of 1 to a of n occur in sorted order. 

Therefore, insertion sort is indeed correct in the senses that, we terminate s and 

termination the array is in sorted order. 
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The analysis are the running time is based on the observation that for the elements a of i 

to be inserted in this correct location in the worst case, which is need 2 times i minus one 

comparisons, we use comparison as a measure of the running time. We count the total 

number of comparisons that need to be made, to ensure that i is inserted into the correct 

place. And here we place an upper bound. In other words we do our worst case analysis 

of the number of comparisons which are required. And observe that if the elements, the 

worst case is the case where the elements a of i should eventually enter the location a of 

1. In other words in the elements a of 1 to a of i a of i turns out to be the smallest 

elements, in this sub array of consecutive elements.  

Then a of i indeed has to be compared with each of the elements; that is i minus 1 all the 



way have to, the element index set i minus 1 up to the element index by y by 1 .Further 

in each of this iterations if you notice the code, that we have written, there is a 

comparison of whether the indexes is equal to 1 or not. So, that is why we get 2 into i 

minus 1 comparisons. Therefore, the total number of comparisons made, is one 

comparison for the first element, and subsequently it is an even number of comparisons 

up to the nth element. Therefore, the total number of comparisons that is made is given 

by summation 1 plus 2 plus four plus six and so on up to 2 time n minus 1. Here is the 

small exercise which is in the toy exercise, calculate this exactly and verify that it is of 

the order of n square. So, this brings to end the discussion of insertion sort, and it is 

instructive to see on what input insertion sort performs the most number of comparisons. 

This is also left as a small exercise to the student. 
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Natural question now, is that can one reduce the number of comparison made by our 

sorting algorithm, from order of n square to something significantly smaller than n 

square. We now show an algorithm which uses a divide and conquer pharadine, recall 

that in the last lecture, where we studied binary search. We encounter the divide and 

conquer paradine, where in that case we were searching for a particular element in a 

sorted array, and in an every iteration the region of the array which is sorted, became 

smaller by a fraction of two. In this case we do something similar we create two sub 



problems of almost equal size.  

Sort the two sub problems recursively, and then merge the sorted arrays. So, this is the 

whole idea, this is the divide and conquer paradine, and this is what merge sort does. The 

sequence of steps are as follows; for the goal of sorting an array, whose indices are in the 

interval p to q, where p is smaller than q. Initially the first time when merge sort would 

be called, the value of p would be 1 and q would be n; that is we want a sort the array of 

size n. The algorithm takes a middle element in the given array. In this case it computes 

the index, given by the formula r which is the floor of p plus q by 2. In other words, the 

range p plus q is taken which is the sum of the two elements divide by two gives a 

middle index in the array, and we take the floor just in case the p plus q is odd. If r is not 

same as p. In other words, if the array has more than one element, or more than three 

elements. If the array has more than three elements, then merge sort of p comma r is 

called followed by a recursive call to merge sort of r plus 1 to q.  

Observe that here is a boundary condition of what happens when r is equal to p. Observe 

that when r is equal to p, there at most two elements in the array. And there is no need to 

recursively sort the elements of size one. Now the two arrays a of p to r and a of r plus 

one to q are now sorted recursively, using merge sort itself, at the end of which the array 

a of p comma r and a of r plus 1 comma q are sorted arrays. We call a function called 

merge which we will shortly discussed. The output of merge is should take these to 

sorted arrays, and insert them into third array, which is called b here. Peak b contains all 

the elements of both the arrays in a sorted in ascending order. b is now copied into the 

array p comma q which is now sorted, and this is description of the recursive algorithm. 

The natural question now, is how many comparisons are made by this merge sort 

algorithm. 
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Before we go there, let us we look at a key step, right which place in important role in a 

merge sort algorithm, which is a time taken to merge to sorted arrays. Let us look it as 

independent exercises, not just in the contacts of merge sort, but just the question of; the 

input consisting of two sorted arrays and the output should be the third array which 

contains, all the elements of two arrays in sorted order. This operation is called the 

merging operation of the two sorted arrays a and b. So, let us look at the time taken to 

merge the two arrays a and b into a sorted array c. The idea is quiet intuitive. So, initially 

x and y are taken to be one. They are smallest elements in the two arrays respectively. 

And z is the first element, the index of the first element in the array c. The first step is a 

following which is very important, this is a beginning of an iteration. If z exceeds the 

total number of elements in the array, in the two arrays, then you exit merge has been 

completed you written the value of c.  

The algorithm returns the value c. In a second step, the smallest of the two elements a of 

x and b of y are identified, and the smallest of the two elements is now assigned, to be 

the element present in the array index z in the array c. This is iteratively done right as 

follows; a of x is compared with b of y. The smaller the two elements as you can see, is 

assigned to c of z. z is an incremented and depending on where the smaller element came 

from, whether it came from a or b, the indices x and y are incremented, the indices y and 



x are incremented. And for example, if the smaller element came from the array y array 

b, then the element assigned to c of z is b of y and y is now incremented and z is also 

incremented. If is smaller elements came from the array a, then x and z are incremented 

and the array element a of x is copied into the array index z in c. Now we will argue that 

this indeed, merges the two arrays and we will also count the total number of 

comparisons made. 

(Refer Slide Time: 18:06) 

 

At this point of time, before we go into that argument, let us does look at the execution of 

the merge sort algorithm, and again this image is taken from the text book or by (18:26), 

and let us look at the run of this algorithm. The leaf levels in this tree tell us the initial 

array. The initial array has had eight elements, and the elements are 5 2 4 7 1 3 2 and 6, 

and observed that in this view every intermediate array that you see as you view this in a 

bottom of fashion, is a sorted array. And the parent of two arrays is obtain by merging the 

contains of two sorted arrays. Let us look at the leaf level, let us look at, the elements 

five and two, individually they are in sorted order, and they are merged to result in the 

parent array which has an elements two and five. If you look at the sibling, the right 

sibling of the array 2 5, it is 4 7 which is obtained by merging the two arrays, which have 

just a single element 4 and 7 respectively. Now 2 5 and 4 7 as you can see, is merged it to 

give the array 2 4 5 and 7. And eventually the whole sorted sequence obtains at the root 



of this recursion tree. It is important to observe that this data structure is present, only in 

the analysis of the algorithm, and the algorithm indeed does not run in this order. It runs 

in a top down order as oppose to the analysis which is happening or which is being 

presented in a bottom up fashion. 
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Let us look at the correctness analysis of the merging step. The merging step is indeed 

correct. So, let us just observe a primary invariant which says that for every z in the 

range; 1 to l plus m, after the zth zth iteration c of z satisfies some nice properties. c of z 

is smaller than all the values in the array a among the region x to l, among the indices x 

to l and it is smaller than all the values in the array b among the indices y to m. 

Therefore, it follows that c of 1 to z all the values are, at most each values in the array 

indices x to l in a, and the array indices y to m in the array b. The third property that is 

the guaranteed by the algorithm is that, the array c is sorted for every z. So, is it 

remembered that z is the iteration number. To prove the above claim, it is sufficient. If 

we prove the above claim, this prove that the merge algorithm is indeed correct, because 

when you take the value z is equal to l plus m, the array c of 1 to z would be sorted; that 

is the whole array is sorted, because of the range of value is that z takes from 1 to l plus 

m. 
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Continue in the correctness analysis, we set up the proof by induction. Let us assume that 

z is equal to 1, and in this case the single ton array. The array containing just one element 

is sorted. It is indeed that smallest element in the arrays a and b; therefore, our claim is 

correct, in this base case. Let us assume, and let us make the induction hypothesis that 

the claim is indeed true for a value z minus 1 ,and let us prove this for z this would 

complete the induction step. So, the first claim is that c of z, is the smallest elements in a 

of x and among a of x and b of y. This is indeed correct, because if you look at the steps 

in the algorithm, we choose a minimum of the elements a of x and b of y and assigned it 

into the value c of z, and therefore, c of z is indeed the minimum.  

Since a and b are sorted, it is clear that c of z indeed smaller than the elements in the 

array location x to l in the array a, and the elements in the array locations y to m in the 

array b. By induction we know that c of z minus 1, is indeed s smaller than or equal to c 

of z. In other words we know that by induction that c of z minus 1 is smaller than or 

equal to all the elements in the arrays a and b put together, and we have taken a minimum 

of all those elements and put them into c of z. Therefore, c of z minus 1 is smaller than or 

equal to c of z. Consequently it follows that c of 1 to z is in the sorted order, given that c 

of 1 to z minus 1 was in the sorted order by the induction hypothesis. This proves the 

induction step; and therefore, we have proved that merge in the succeed, that after l plus 



m iterations the whole array c is in the sorted order, and therefore, the merge algorithm 

indeed succeed.  
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Let us now analyze the running time of merge. It is very important to get an 

understanding of how much time it takes for merge to run, it is crucial to understand, 

how does one count the running time, and in this case we count the total number of 

comparisons. The most important observation that we make, is that every time a 

comparison is affected, the size of the array c keeps increasing by exactly one. As a 

consequent of this observation, after l plus m comparisons there will be l plus m 

elements in the array c, and therefore, the total number of comparisons used, is a sum 

total of a total number of array elements in two arrays a and b. Therefore, the number of 

comparisons used by the merge algorithm is l plus m. In other words it is just linear in 

the size of, the number of elements in the two arrays put together. 
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This gives us a handle to analyze a running time a merge sort. Again here we count the 

total number of comparison made by merge sort. Let t of n denote the number of 

comparisons made by merge sort on an n element array. For the sake of simplicity, just 

for the argument let us assume that n is a power of two for some value k; that is n is 

equal to two power k. Now t of n is given by the formula, t of n is two times t of n by 

two plus n, and t of two is just equal to 1.  
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Let us understand this formula. This is called a recurrence equation, and two times t of n 

by two, is the number of comparisons on the recursive sub programs, to sort the recursive 

sub problems; that is, the sub problem consisting of one half of the array, and the second 

sub problem consisting of the second half of the array. The second term which is n, is the 

total number of comparisons made by merge which we just very recently analyze. A 

solution to this recurrence equation, gives us a solution to the number of comparisons 

made by the merge sort algorithm, and this will be completed in the next lecture. 


