
Programming Data Structures, Algorithms

Prof. N. S. Narayanaswamy

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Module - 4

Lecture - 31

Content

Finding minimum and maximum in an array

Simultaneous min and max in an array: analysis

Example of simultaneous min and max

 (Refer Slide Time: 00:06)

And compare the current minimum to the new data; that is entered into the sub problem.

In other words in the second iteration, we consider the second element and compare it

with the minimum, which was the first element. If indeed the second element is smaller

than the current minimum, then it indeed becomes the minimum among the array, which

consist of the elements a of 1 and a of 2. So, this is an iterative procedure, where one

scans the array from the element index by the smallest value up to the element index by

the largest value in this case 1 to n, and start of with the, an estimate of the minimum

value to be the first element and update this estimate by a comparison, by one

comparison in each iteration. It is very clear that we will have to perform n minus 1

comparisons. It is not possible to perform anything less n minus 1 comparisons in this

approach, unless we know something else about the array. Therefore, these algorithms

that we have just discussed, is an optimal algorithm with respect to the number of

comparisons. The number of comparisons is you need n minus 1 comparison in the

algorithm above, performs exactly n minus 1 comparison; therefore, this is an optimal

algorithm.

(Refer Slide Time: 01:27)

it is the very interesting exercise to ask, if one thing compute, both the minimum and the

maximum elements in the array by efficiently, but more importantly by in a simultaneous

fashion; that is we want the algorithm at every point of time to keep estimates of both the

min and max in the array, and update both this estimates, and finally, conclude that min

and max of min found. Here is one way of doing it. Use n minus 1 comparison for each

of thing that is can the elements from the first element to the last element.

Assume that the first element is both the minimum and the maximum, and compare the

current minimum and the maximum in every iteration with, the current element. This is

two comparisons for element, there are n minus 1 elements that there are compared

against the minimum and the maximum values, and therefore, refer from 2 n and minus 2

comparisons. We can interested in coming up with a better algorithm which uses strictly

smaller than 2 n minus 2 comparisons, and we presents an algorithm which uses at most

3 n by 2 comparisons. So, let us just understand how this can be done. In this straight

forward approach, which is listed in the first item. We have estimates of min and max

and we compare both min and max, with the next element in the array; that is in the ith

iteration we compare the ith element with both min and max, to check if the ith element

replaces the minimum value or the maximum value. Of course, one can use the fact that,

we have computed two values which are min and max, and if we compare min and max

with a pair of values, then min is to be compared only with the smaller of the two, and

max needs to be compared only with the larger of the two, and therefore, you can

compute the min and max among these four elements with 3 comparisons. This is the

whole idea.

So, the whole idea is, to process the elements in the array in pairs and maintain the

minimum and the maximum values, in each iteration that has been calculated so far, and

compare the minimum element with the smaller element of a pair, and compare the

maximum to the maximum element in the pair. Observe that the inner pair; the smaller

element can be identified with one comparison, and after that we count only two

comparisons therefore, among four elements we are able to compute the minimum and

maximum, using just 3 comparisons, and this is the trick that we generalise, to reduce the

total number of comparisons .

(Refer Slide Time: 04:48)

So, here is the algorithm which is described. Initially the values, when n is odd min and

max are taken to be the first element, and when n is even min and max are taken to be the

first two elements. This takes one comparison; min is taken to be the smaller of the first

two elements, and max is taken to be the larger of the first two elements. This is done at

the cost of one comparison.

(Refer Slide Time: 05:19)

And then based on this algorithm that we have a outlined, there will be a total of n by 2

comparisons, or if n is odd, there will be a n minus 1 by 2 comparisons. And if n is even,

there will be n minus 2 by 2 comparisons. Comparison pairs an each of them requires 3

comparisons to identify or update the minimum and maximum. Therefore, the total

numbers of comparisons which are made, are 3 times n minus 1 by 2 plus the first

comparison and 3 times n minus 2 by 2 plus the first comparison. This is the total

number of comparisons which are made. So, this is the whole idea. Let us run it on as

single example, where there are five elements in the array. The array has elements 2 7 1 3

and 4, and we just illustrate have this simultaneous min and max calculation happens.

Initially, because n is odd min and max are taken to be 2.

Then we compare the elements, by considering the pairs one and 7, and the pair 3 and 4.

In one iteration, we consider the pair one and 7; one is smaller than 7, this involves one

comparison. And after that one is compared with a current minimum, and 7 is compared

with the current maximum. As you can see this is sufficient for us, to very easily extract

the minimum and maximum among the elements 2 7 and 1. Now min and max are

updated to be one and 7 respectively. They are different from the earlier estimates, which

was both 2. And we have now use 3, addition 3 comparisons. Then 3 and four are

brought into the whole exercise. Now 3 is compared with the current minimum, because

it is a smaller of the 2, and four is compared with the current maximum, because it is

larger of 3 and four. Already one comparison is used to identify which of 3 and four is

smaller; therefore, we use three more comparisons, and total of six comparisons are used

which is three times n minus 1 by 2 comparisons

(Refer Slide Time: 07:36)

Similarly, when n is even, we use one more comparison to identify this smaller of the

first two elements, and subsequently we have three times n minus 2 by 2 comparison. In

this case it is very easy to see that there are 7 comparisons that have been made. So, this

is the whole idea, let us run it on a single example, where there are five elements in the

array. The array has elements 2 7 1 3 and 4, and we just illustrate have this simultaneous

min and max calculation happens. Initially because n is odd, min and max are taken to be

two then... We compare the elements by considering the pairs one and 7, and the pair

three and four. In one iteration, we consider the pair 1 and 7. One is smaller than 7. This

involves one comparison, and after that one is compared with current minimum and 7 is

compared with the current maximum. As you can see this is sufficient for us, to very

easily extract the minimum and maximum, among the elements 2 7 and 1. Now min and

max are updated to be 1 and 7 respectively. They are different from the earlier estimate,

which was both two, and we have now use three addition, three comparisons. Then three

and four are brought into the whole exercise.

Now there is compared with the current minimum, because it is a smaller of the two, and

four is compared with the current maximum, because it is large of three and four.

Already one comparison is used up to identify which of three and four is smaller;

therefore, we use three more comparisons, and total of six comparisons are use, which is

three times n minus 1 by 2 comparisons. Similarly when n is even, we use one more

comparison to identify this smaller of the first two elements, and subsequently we have

three times n minus 2 by 2 comparisons. In this case it is very easy to see that there are 7

comparisons that have been made.

