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So, today let us continue our study of algorithms with an exploration of this area of  

searching, as most of us no searching is actually a fairly common word now associated 

with computer science, because of search engines which are accessible to most of us. 

And let start off with simplest of searching exercises, where we want to search a data 

structure for a key which is given as input.  
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So, in this lecture we are going to look at this issue of searching an array. Of course, one 

could consider the problem of searching other data structures. We will come to it as we 

progress. So, if you look at the question of searching. Searching is a process that is used 

to find the location of a given key or a target among the list of objects. So, when you 

search an array, the search algorithm, is expected to return the first element, in the array 



that contains the given key. In this picture we can see that the target key that is been 

given is a key 62, and it occurs in the location 4, and we want to design an algorithm 

which efficiently gives us the value 4. The approach to achieve this particular task is 

given to us in the coming slide. 
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So, now let us explore the procedure for the search of the given key 62, which we know 

from this visual is at location 4 or it is in the array index within number 4. And it is 

important to note that the indices of the arrays are from index 0, all the way up to index 

11; that is there are 12 elements in this array, and we want to search for a given key 

which is 62. Let us look at the basic steps that have to be done. We start by comparing 

with the element which is at index 0, and the element there is 4, the comparison of 62 

and 4 definitely results in the fact that they are not equal. And next comparison would be 

with the element at index one, which is 21 and so on till we come to the third element for 

example, where again a comparison with 62 is made with a value which is their, which is 

14. And after 5 iterations they remain 62 is found for the first time in the array index 

four, and this is considered as a discovery or a successful search, where the search key 

has been found. 

Now, it is a act to indeed call such a search procedure and linear search, because in every 



iteration we queried index in the array, increases by 1. If you plot the indices of the 

locations which have been proved or searched, you will find that this plot against 

iteration number; that is the x axis been the iteration number, and y axis be the index of 

the location search. You will see that this plot is a straight line, and into the natural to call 

is a linear search. This is very important to understand, why this is called linear search. 

The array indices as searched in a linear fashion. It starts off with 0 then one then 2 and 3 

and so on and so forth. 

(Refer Slide Time: 04:01) 

 

It is considered the running time to search for a key which is seventy 2, which as you can 

see does not occur in this array. And there are 12 elements in this array, and we do not 

show all the comparisons. This is definitely not necessary. As you can see all the 

comparisons will fail in this linear search, till the index value exceeds 11; that is it 

becomes 12. At which point if time you have an exit condition; that is you have searched 

the array, compared every element is a array with a given key, and you have exceeded the 

total number of elements that are there in the array, and therefore, the element is not 

present in the array. And the algorithm at this point of time can report that the given key 

is not present in the array. It is very important to note that we have observed two of the 

exit conditions of this algorithm, when the key is found, and when the key is not found. 

The key is not found when you compared it with all the elements in the array. And when 



the first time the key is found in the array, the algorithm exits. These are two exit 

conditions, and this can be encoded. 
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In the following algorithm, and to make a distinction which something that we are going 

to study we call this unordered linear search. The algorithm is linear search, and it is 

unordered linear search, because the algorithm does not use any structure of the data 

elements which are present in the array. For example, the data elements in the array 

could be sorted, but the description of the algorithm does not use that fact, and therefore, 

this is called an unordered linear search. In other words unordered linear search is 

applicable, when you have searching for a given key in an array, in which you have no 

apriory information about the organization of the data elements. Data elements could be 

in a sorted order, or they could be in unsorted order.  

And we have seen the conditions under which, a straightforward linear search algorithm 

will exit, and this is encoded in this pseudo code which is described. It says that while 

there are some more elements in the array. If the value is found at the current index then 

you return the index of the current location; otherwise you increment the index, and 

continue in the loop. At the end if the value is not found at all. A return value of minus 

one is given. Of course, if a programs is one has be very careful, and ensure that the 



array indices are between, or at least as largest 0, and minus one is not an array index. 

The programming language like c, this is definitely the case where there the indices start 

at 0. 
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So, this is a snapshot of a c program which is included in the slide, to understand the 

complexity, or the amount of time that is spent in executing this particular algorithm 

which is unordered linear search. So, the function that we have written here that you see 

here is called search function. The arguments to this function is an array, which is called 

elements, and the size of the array is given as an additional argument, just to illustrate 

this example, and the key, the desired that is being search for in elements is also passed 

as an argument search. The for loop there that initializes and indexed to 0 on search as up 

to the size of the array, and in every iteration, in every loop the element access at a 

particular indexes compared with a given key, and if a successful match is made then the 

indexes returned, as the location where the key is present. If the key is not present in the 

whole array, which is discovered after the loop has run for as many steps has the size of 

the array. The control exits from the loop, and a minus one value is return by the search 

function, which informs the calling function that the key has not been found. The use of 

this c program mainly, is for us to understand where the effort in computation is, for us to 

be able to, say something about the running time of this algorithm. 
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 Here is the analysis, if the key is at index i then clear the i comparisons are executed; 

one and every loop. So, the other words, if the key is the index 0, then one comparison is 

definitely executed; that is, in the first loop. In the worst case, if the key is not present in 

the array, then the loop is executed as many times as a size of the array which we have 

said. Therefore, the worst case running time of this algorithm, is order of size of the 

array. Note that we have one arithmetic operation also, which increases the value of the 

variable called index. A natural question now, is the following; can we reduce the 

number of comparisons in a number of arithmetic operations performed by a search 

algorithm to find a key in a set? And we also consider cases, in which the data in the 

array is, in a sorted order, and then we see if it is possible to design better algorithms, 

better in the sense that the number of comparisons in number of arithmetic operations is 

reduced. Here is an exercise, at this point of time.  
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So, what happens if one does a linear search in a linked list. And what is linear search. In 

this case, as you can see linear search involves incrementing the array index, starting 

from the smallest index value to the largest possible index value in the array, and 

searching or comparing for the presents of a key. So, it is important as an exercise to 

understand, what linear search in a linked list is. 
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That is an exercise, and let us move ahead, and explore this question of, what order linear 

searches. In other words what is linear search when the data is ordered in the given array. 

In other words the array contains the data elements in say sorted order. Let us say in this 

case as you can see it is in ascending order, and how much time does it take, or how good 

in algorithm can be design, to be able to find a target key in this particular array. And of 

course, if the key is not found in the array, we should return a value minus one, and we 

make assumptions as we have been making so far that all the data items are in the range, 

sorry all the indices are at least as large as 0.  

So, one of the properties of ordered linear search, is that linear search can stop 

immediately, when it has passed the possible position of the search value. For example, if 

you see the slide, if the queried value is the value 8, then one can perform a linear search 

up to the value 5, up to the value ten which is found in the location index by the number 

5; that is the element a of 5 in this array a, and we find the ten is larger than the queried 

value 8, and we already know that the array sorted in ascending order. Therefore, we are 

not going to ever find 8 after the array index 5, because 10 is the value which is sitting in 

that location. So, this is one way in which we can use the fact that, the array, the data 

elements in the array are in sorted order. 
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So, this is exactly the algorithm that is implemented. Observe that there is one another 

check, which is there, which is run first inside the while loop. If the value is, at the 

current indexes greater, then the value that we are searching for, then the value win not 

be found, and you can return a minus one immediately. Now while this is one way of 

using the fact that, the elements of the array are ordered. In this case in ascending order, 

and this is indeed the c code for this. 
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Let us perform an analysis, what is the worst case running time of linear search on 

ordered data. In the worst case, as we can construct by an example, no matter what the 

array is. If one considered the target key to be a value which is larger than the element, 

which is present in the largest index. In this example consider the key 18. 18 is larger 

than 17 which is a value, which is present in the index 7. Therefore, an execution of 

linear search to look for 18 in the array, will compare 18 with each of the 8 elements 

which are present in the array, and it is a same for loop as we have seen in the previous 

slide. Therefore, there is an arithmetic operation every iteration in the worst case, and 

there is also a comparison that happens in the worst case. Therefore, in the worst case, 

the running time is, the order of the number of elements in the array. Therefore, there is 

really no change in the worst case analysis. Therefore, how does when use the fact that 

the array is ordered, to get better algorithms? Is it possible at all? 
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That is the focus of the next search algorithm that we explore, which is very well known 

as the binary search approach, and we will see why this is called binary search approach. 

And here the most important principle, is that the search key does not have to search, or 

does not have to be compared with every element in the array. In other words, by making 

certain comparisons, we can deliciously discard, certain parts of the array from the effort 

that we have to put into compare the given key with the elements. For example, if the 

given key is 18. If we end up checking, comparing 18 with the element 5 which is 

present at the array location three. If 18 is present in the array, then it could be present 

only among the indices 4 5 6 and 7. And we can see that, the search region is kind of 

reduced by half or approximately by half. This is exactly what we are going to encode 

into a alternate procedure. And let us look at one run of this algorithm. 



(Refer Slide Time: 15:44) 

 

So, a is the array here, and the target key is 22 and there are 12 elements in this array. As 

you can see 22 is present in this array, it is in the array location index by the value is 6. 

So, the algorithm is very simple. It keeps track of three values which are called; first, 

mid, and last. First and last are extremely important. They keep track of the sub array 

that we want to search. The sub array that we want to search is, in this example, the un-

shaded part; the shaded part, is the part that we do not want to search. So, let see this run 

of this algorithm. Initially, first is the value 0, last is the largest array index which is 11, 

and mid is the midpoint, which is the first plus last divided by 2, and we take the floor of 

the division. In this case the floor would be 5. So, 11 plus 0 divided by 2 is 5 and a half, 

and we take the value 5. A comparison of the given key is made with the data item which 

is located at the array index 5, which is 21, and 22 is greater than 21, and because the 

array is sorted in ascending order. It is clear that 22 must be present, only in the array 

indices 6 through 11, and definitely is not present in the array indices 0 through 5.  

The array indices 0 through 5 are now shaded in grey, and first and last are now used to 

encode, the first and last index values of the relevant part of this array a, which is now 6 

to 11 and the midpoint is now. You can do the calculation is 8 is 6 plus 11 by 2 which is 

17 by 2 is floor of it is 8. And the algorithm repeats this step of comparison, comparing 

22 with 62 which is a value in the array index 8. And of course, 22 is smaller than 62 and 



therefore, 22 cannot be present in the indices 9 10 and 11. It is not present in the array 

index 8, as our comparison shown. Therefore, it can only be present among the array 

indices 6 and 7; that is among the array indices first and mid minus 1. This is most 

important thing that it is present in the array indices first and mid minus 1 in this case. 

And as you can see now, first and last have become 6 and 7 respectively and mid is now 

6; 22 is successfully found and the algorithm terminates reporting the index of the 

location where 22 has been found which in this case is 6. 
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Why do see the condition and which this algorithm exits and reports that the key is not 

present. In this case, the target value is 11, and as you can see 11 is not present in the 

array, and again the gray shaded part is the irrelevant part of the array for the search 

algorithm, and the unshaded part is the relevant part. First and last as usual end code 

have, do encode the relevant part of the array, keeps track of the indices, initially it is 0 

and 11. A comparison is with mid, 11 is smaller than 21; therefore if 11 is to be found, it 

can be found only to the left of the index 5 that is among the array indices 0 to 4, which 

is now captured by the modified value of last, which has now become 4. Mid is now 

recalculated in the next iteration to be 2, a comparison is made with a value which is 

sitting in the array index 2 which is 8. 8 indeed is not larger than 11; therefore, 11 has to 

be to a right of 8 if it is at all present in the array.  



Therefore, now in this case, 11 should be present if at all, in the array indices last and 

mid minus 1. Sorry last and mid plus 1. So, mid was the value 2, and now observe that 

the value of first is now 3; that is, mid plus 1 and last. As you can see that in one more 

query it is discovered that, the search key 11 is not present in the array, and at 

termination condition you can see that, first has become larger than last, and this is a 

termination condition for the algorithm. So, this is very important the termination 

condition for the algorithm is, when first exceeds the value of last. At which point return 

you can report that the key has not been found, and the key is found, the value of mid. 

The location where the key has been found will be reported as a return value of the 

algorithm. These are the two invariants, which precisely map the presence or absence of 

a key from the array.  
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So, in generic terms, binary search is a paradine of solving the problem by what is called 

a divide and conquer strategy. In this divide and conquer strategy, the search space, in 

this case the array is repeatedly divided into smaller and smaller portions with the 

guarantee that, the search value would be present in the region that is been search that 

every level or in every iteration. As we have seen in with every comparison, the size of 

the array has been reduced by a factor of 2. In other words the array size become smaller 

and smaller is halved in every iteration, and this kind of gives us a clear handle on, an 



understanding of the binary search algorithm. 
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Let us see the pseudo code. And the pseudo code is very important, because it tells us 

how the first mid and last have to be modified. So, initially first and last are set to take 

the values of the boundary of the array. The mid value is calculated. The search value or 

the key is compared with the element in the mid value. If it is in the present the mid 

element is returned as a value. If it is not present, a comparison is mid whether the value 

was. If indeed the mid value does not contain, but first is more than last then the value is 

returned. First is at least as large as last then the return value is minus 1, same that the 

key has not been found. Otherwise if the value is smaller than that in the middle element, 

last is now make to take the index which is mid element position minus 1; and if value is 

larger, than first is taken to be the mid element plus 1. That is, in other words one would 

visualize the search to be moving either to the left or to the right of the midpoint in the 

array, provided the key is not found. 
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Here is the pseudo code for this function which is binary search. It is actually cut and 

paste from a c program. Right now the arguments are as usual element an array which 

contains sorted set of elements. The size of the array is given, and key is also given as 

part of the input. And first is taken to be the value 0, and last is taken to be the value size 

minus 1. And you can check the integer division which is middle takes the value of first 

plus last divided by 2, and whatever comparisons we have discussed so far are made. The 

value of this particular piece of code is that it gives us an idea as to the number of 

operations there are perform in a run of this particular algorithm.  
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So, let us use go through the example of binary search in this case where the array has 

the elements 8 elements in ascending order and the search key is 14. 14 at present in the 

array index 6, and one can see the conditions and which the algorithm exits. So, the first 

value that is searched, is the array index 3. And array index by the value 3 which is 0 

plus 7 divided by 2 on the floor of it gives you the value 3, and the search value is 14 and 

clearly 14 is to the right of 5, and first is the one whose value is updated to take the value 

4; last remains unchanged. In a next iteration mid look becomes 5 and 7 plus 4 divided 

by 2, and this search succeeds by computing the mid value 6. As you can see the order of 

the elements in the array, guides the choice of the array locations which are propped by 

the algorithm. 
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 So, here is an unsuccessful binary search, and the unsuccessful binary search can 

terminate in to conditions where first and last are the same, and the middle value does 

not contain the search key. This is very important. There are three cases here; the first 

case we have already seen, which is successful search. Here is an unsuccessful search, 

where the exit condition is because the key is not present, and first and last of the same 

value. right here 8 is a search key, and it is clear that, the sequence of searchers finally, 

queries the element 4, which has the value 7, but first and last take the same value at this 

point of time, and because 7 is not equal to 8 and there is nothing else to be searched, the 

search returns a failure. 
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Here is a case where first exceeds the value last, in the next iteration, and the key is not 

present here. So, this can also checked.  
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The focus now is to analyse binary search, which is the algorithm that gives analysis we 

postponed, to the end. Let us look at this analysis of binary search, where our goal is to 



estimate the total number of comparisons of the binary search algorithm. So, let us write 

the formula for binary search by t of n; where t stands for time, and n stands for the array 

size. For the moment let us assume that n is a power of 2. This simplifies the analysis, 

and therefore, we use n to be a power of 2. Let us look at the case when t of n, for n is 

equal to 2 . So, let us just focused on the array, it just has two elements , and let us 

assume that the elements are 1 and 3 in sorted order, and let us count the number of steps 

that it takes to check the query element . So, this is the array index with 0. This array 

index by 1. And it is clear that a queried element, can be resolved for whether it is 

present or not in the array, in two comparisons. The maximum of two comparisons. So, 

for example, what could happen is, that if the search is for a value half, then the array 

index which should be compared is, half would be compared with 1, half is compared 

with 1, and then the first mid and last are updated, and half will not be found, so that 

takes only one comparison. If the value is three then in two comparisons it could be 

found. And if the value is larger than 3 then again it would be found, that if the value is 

absent in at most two comparisons. Therefore, t of n for n is equal to 2 is written as t of 2 

which is just two comparisons.  

So, let us considered the case for n is a power of 2, and let us look at the array indices. 

The array indices are a of 0; that is, sorry the indices are 0 to 2 power k minus 1, and the 

value of the array index; that is taken to be relevant, is the value 2 power k minus 1 

divided by 2, which will be 2 power k minus 1 minus 1; that is the floor of this is 2 

power k minus 1 minus 1, which would be the value that would be compared. Therefore, 

as you can see, after the first comparison the relevant part of the array would be the 

range a of 0, to a of 2 power k minus 1 minus 1, or a of 2 power k minus 1, to a of 2 

power k minus 1 there are only two possibilities, for the rest of the search space, after 

one comparison. So after the first comparison with a given key, these are the two range 

of values. As you can see that the range of values is now down by a factor of 2.  

We can write this. We can encode this using the following recurrence, which is t of n is t 

of n by 2. The time taken to search for the key and an array of size n by 2 plus 1 and the 

boundary condition is given by t of 2 is equal to 2, and the solution for this recurrence is 

t of n is order of log n. Indeed it is log n to the base 2, but the constants in the order take 

care of it. So, this is the analysis of binary search, and observe that we have use the fact 



of the array is sorted, to come up with an algorithm with just use as order of log n 

comparisons, as suppose to ordered search which in the worst case, was using linear 

number of comparisons, or order of the size of array number of comparisons. And in the 

case when the array is unordered, we were already using the linear number of 

comparisons which are unavoidable. So, with this we stop this discussion on search and 

we will continue on the next lecture. 


