
Programming, Data Structures and Algorithms 

Prof. N.S. Narayanaswamy 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Module - 02 

Lecture – 29 

Example: Polynomial evaluation by direct method 

Polynomial evaluation by Horner's method 

Example: Multiplying two n bit numbers by direct method 

Multiplying two numbers by Karatsuba's method 

Analysis for Karatsuba's method-recurrence equation 

Big-O notation 

 

(Refer Slide Time: 00:11) 

 

So, let us move ahead to a very closely related topic which is polynomial evaluation 

where we need similar tricks to improve the efficiency of evaluating polynomials. 

Consider the polynomial which you see here which is p of x, which suggest that the 

name of the polynomial is p, and x is a variable. And the polynomial is a n x power n 

plus a n minus 1 x to the power of n minus 1, all the way upto a 2 x square plus a 1 x 

plus a naught. So, this is a polynomial of degree n which means that the variable x occurs 

as x power n; and a 0, a 1 to a n are coefficients.  
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 As you can see there is an example here; the example is a quadratic polynomial. In other 

words, a polynomial of, it is a quadratic polynomial, right, which means the polynomial 

of degree 2. And the algorithmic exercise is an extensively used algorithmic exercise 

though it looks extremely simple. Input a polynomial, given a polynomial p of x as input, 

and value v for x; x is given a value v; v challenges to output the value p of v.  

So, for example, let us take the given polynomial, and let us say v equals 2, in which 

case we have to compute 2 multiplied by 2 square minus 3 multiplied by 2 plus 1. And 

this is 8 minus 6 plus 1 which is equal to 1. Observe that there are many ways of 

evaluating this polynomial, and the most simple way of evaluating this polynomial is the 

following iterative algorithm where you evaluate the formula, evaluate the polynomial 

from right to left. 
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You evaluate the polynomial from right to left; what do you I mean by right to left? You 

start off in the ith iteration, for i is equal to 0. You take the value is 0. And this is the 

value that you have computed. For, i is equal to 1, you take the value x multiplied by the 

value a 1 and perform an addition. In the iteration number 2, you take the value x, you 

multiply it by x again which is gives you x square, store this and keep it with you, or 

store it in a temporary variable, multiply this by a 2 and add the value that you have 

computed so far.  

And in iteration number 3, you take the value of x square that has been computed in the 

previous iteration, multiply it by x, you compute x cube multiplied by a 3, and perform 

an addition; this is what I mean by evaluate from right to left. In other words, you can 

think of it as the polynomial being evaluated from the element of least degree to the 

element of highest degree; note that a 0 is a constant. The multiplier is x power 0 that is 

1, and you evaluate this all the way upto a n x power n.  

Let us evaluate this algorithm. Indeed the algorithm is correct because it is quite clear 

that in every iteration, one part of the polynomial is being calculated on the given value 

v. So, in every iteration you calculate v power i from v power i minus 1, you multiply it 

by a i; this cause a total of 2 multiplication operations; then you add the result to the 

current value which gives you the value of the polynomial on the degree i polynomial 

that is a i x power i all the way upto term a 0.  



The total number of arithmetic operations that we have performed is 2 n multiplications. 

There is in every iteration you perform 2 multiplications and 1 addition. And this counts 

for 2 n multiplications plus n minus 1 additions, this is the total of 3 n minus 1 arithmetic 

operations which are performed. Let us do see if there is a way of improving this; and 

this improvement is a very clever trick which is a very important trick which is called the 

Horner's method for evaluating the algorithm. 
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To understand the Horner's method of evaluating the algorithm, it is extremely important 

for us to visualize the polynomial which we are interested in evaluating in a slightly 

different form; in other words, we rewrite the polynomial. And how do we rewrite the 

polynomial? Let us just look at p of x, we rewrite at it as a 0, the element, the constant 

term in the polynomial. And in the remaining terms, x is a common factor. If look at all 

the other terms, x is a common factor; that x is factored out. And the remaining 

polynomial is called p 1 of x.  

In other words, p 1 of x is a n x power n minus 1, all the way down upto a 2 x plus a 1. 

Observe that p 1 of x is obtained by taking the first n terms of p of x, and taking out the 

factor x from them. For example, if you go back and look at p of x, so look at p of x, it 

has, the first n terms of x as a factor; you just take that out and consider the remaining 

polynomial; and what we get is p 1 of x.  

So, we have already seen that the Horner's method is an optimal method for evaluating a 



given polynomial, given as the set of its coefficients in the sense that it uses exactly the 

required number of arithmetic operations. In other words, to evaluate the polynomial of 

degree n at a given point for the variable x we need definitely n multiplication operations 

followed by n addition operations.  

And observe that we are not counting the number of operations which are required to 

compute the higher powers of the value v that has been given. What we have just seen is 

that the Horner's method uses exactling the minimum number of operations; in other 

words, it is a optimal algorithm for evaluating a given polynomial at a given point, or a 

given value for the variable x. 
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So, let us move on and ask some questions about efficient algorithms for the most 

simplest looking exercise of multiplying n digit numbers. Here is the exercise. We have 

to write a program to multiply 2 n digit numbers. And here, we deviate slightly from the 

module that we have been looking at so far when we assume that any 2 numbers can be 

multiplied in, any 2 positive integers can be multiplied in unit time. We do not, we 

discard that assumption and now explore the challenge of multiplying 2 n digit numbers. 

In other words, the 2 numbers have n digits and we want to count the total number of 

single digit multiplications that are required to multiply the 2 given numbers. So, let us 

look at this example which we see here which is multiplying the numbers 1234 and 

5678. Both of them as we can see are 4 digit numbers, and the straight forward high 



school multiplication approach is to write down 1 2 3 4 5 6 7 8, and now observe that 8 

has to be multiplied to each of this 4 digits, and then 7 has to be multiplied with each of 

these 4 digits; 6 has to be multiplied with each of the 4 digits; and 5 has to be multiplied 

with each of the 4 digits. 

 In other words, each digit in 1 must be multiplied with all the digits in the other, in the 

straight forward multiplication method which we are all very familiar with. And 

therefore, if the 2 numbers have n digits each, we essentially are performing n square 

multiplication operations, single digit multiplication operations. This example, it is of 

course, 16 multiplication operations. The question now is, can we come up with an 

algorithm which uses a lesser number of single digit multiplication operations? Let us try 

to pose this question very clearly, and that is exactly what has been written as the 

question at the end of the slide - can we come up with an algorithm and along with the 

algorithm we must write down a formula for the number of multiplication operations 

performed by that algorithm.  

And that formula must be smaller than n square, for all values of n expect for some finite 

numbers of n. I repeat this. The exercise now is to come up with an improved algorithm. 

What do we mean by an improved algorithm? We want to come up, or design and come 

up with, or design an algorithm; not just design the algorithm, but we also want to 

analyse the algorithm and come up with the formula for the number of operations which 

are performed by the algorithm. 

What property do we desire from such a formula? We desire that the formula must be 

smaller than n square at all values of n, except for a few small values of n; meaning, 

maybe for the first 10 numbers n, that is for upto 10 digit numbers, maybe n square is 

smaller than the formula that we have come up with. But, beyond 10, it must be larger 

than the formula that we come up with. In other words, our formula must be smaller, or 

the formula associated with our algorithm must be smaller. So, there are 2 tasks here - 

one to design the algorithm, and two to analysis the algorithm and write down the 

formula for the number of single digit multiplication operations that it performs.  
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So, we have already seen a very straight forward method; let us do something more 

sophisticated and interesting and exciting. And this is the Karatsuba's method. So, let us 

just recall the whole exercise. We want to multiply x and y which are 2 n digit integers; 

these are 2 n digit integers. And the way we do this is to look at x and y in a slightly 

different way. So, what we do is we consider x to be in the form x 1 multiplied by 10 to 

the power of n by 2 plus x naught, and y to be y 1 to the power of 10 to the n by 2 plus y 

naught. 
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So, let us do a small exercise. So, let us consider x. Let us consider the x to be equal to 3 

4 5 6 and y to be equal to 6 7 8 9 1 4. So, the total number of digits in both these cases is 

6. We write x to be 123 multiplied by 10 to the power of 3 plus 456. Clearly this can be 

very easily done, right. 6 is divisible 2, right; that gives an exponent value of 3; and 

therefore, you can write this as 123 into 1000 plus 456. Similarly, we can write down y 

to be equal to 678 multiplied by 1000 plus 914. 

What are we interested in? We are interested in the value x multiplied by y, which is this 

term multiplied by this term; this is the product of the right hand sides. I hope the 

approach is clear. So, the most important thing is that 123 multiplied by 1000, and 678 

multiplied by 1000 are very easy to evaluate; and they do not require multiplication 

operations. 123 multiplied by 1000 just involves us writing down 123 followed by 3 0s. 

Similarly, 678 multiplied by 1000 just requires writing down 678 followed by 3 0s.  

If one wants to compute the product of 123000 and 678000, then one only needs to 

evaluate 193 multiplied by 678. Once you have computed these, this number we had it 

with 6 0s. Let me write this just for the purposes of visualization in this form; that we 

just need to evaluate 193 multiplied by 678. Observe that we want to multiply 2 6 digit 

numbers, and because we know that we can pad the 6 0s, this is the multiplication of 3 

digit numbers. This is the multiplication of 2 3 digit numbers. This is the whole idea that 



we have reduced the size of the problem.  

This is extremely important. We have reduced the size of the multiplication problem in 

one step by rewriting the number in this form from a 6 digit multiplication to 3 digit 

multiplication. But, of course, there are some tricks in world. It is not so straight forward. 

As you can see, there are some more multiplications to be done. So, let us go back to our 

slide and look at it in the formal way.  

As we have just seen, we have seen that x can be written in this form and y can be 

written in this form; we did see this through an example. We saw this through this 

example. Now, let us just focus on the values of y naught, y 1, x 1 and x naught. You 

have already seen that x naught and y naught are smaller than 10 to the power of n by 2. 

Now, let us look at x, y, the product of we are interested in, and see how this can be 

rewritten.  

This can be rewritten by just expanding this term out. When you try to expand this term 

out let us assume that the coefficients that one gets are z 2 multiplied by 10 power n; that 

is a product of x 1 and y 1 is written down as z 2. Then there is a term where the 

exponent is 10 to the power of n by 2. This is the product of x 1 into y naught plus x 

naught into y 1, and then there is protect of x naught and y naught which we have written 

as z naught. 

We have already seen the multiplication by powers of 10 is adding least significant 0s. 

Now, is this going to help in reducing the total number of multiplication operations, 

single digit multiplication operations? So, let us just focus on z 2 which we have already 

seen that is x 1 multiplied by y 1; z 1 which is x 1 into y naught plus x naught into y 1; 

and z naught which is x naught multiplied by y naught.  

Most important thing is that this value, this is 10 to the power of n by 2; this is selected 

so that in the sub problems there are just n by 2 digits that need to be multiplied; the 

number of, in every number that means to be multiplied, there are just n by 2 digits. 

Now, let us just look at the second term which is the most important thing. Observe that 

as of now there are 4 multiplications to be done, that is z 2; this is a single multiplication; 

z 1, it looks here that this is one multiplication and this is the second multiplication and 

then this is the fourth multiplication. 

However, a small trick of rewriting z 1 into x 1 plus x naught into y 1 plus y naught 

minus z 2 minus z naught. Let us see this z 2 is x 1 minus x 1 y 1, z naught is x naught 



multiplied by y naught, if you evaluate this and subtract z 2 and z naught we get exactly 

what we want which is the value of z 1. And now observe that this is a single 

multiplication operation. And what we are going to see is that all these multiplication 

operations involve just n by 2 digits.  

So, let us just go to the example, right. So, remember that we wanted to multiply these 2 

6 digit numbers; we wrote the number down as 123 into 1000; how many digits are left 

now? Half the digits are left. If you notice here there are n by 2 digits. There are just 3 

digits here. Similarly, there are also 3 digits here. Further observe that these 2 numbers 

are obtained by looking at the 3 digits of x, the first, the least significant 3 digits of x and 

the least 3 digits of y.  

Therefore, those 2 values have to be lesser than 1000. They cannot be 1000. They have 

to be lesser than 1000 because they involve only 3 digits; same with this term, right. 

Therefore, what is the conclusion? The conclusion is that we now have 4 3 digit 

numbers. We started off wanting to multiply 2 6 digit numbers; we have broken it down 

into 4 3 digit numbers. And going back to our previous slide, we are now wanting to 

evaluate, we have now observed that x 1 y 1 y naught y 1, all are n by 2 digits; in that 

example there were 3 digits. 

Now, let us just look at the reduction in the number of multiplication operations. Both, x 

1 and y 1 as we have seen are smaller than 10 to the n by 2; that is they have less than n 

by 2 digits; same with y naught and y 1. Secondly, let us just look at the sum of the 2 of 

them. So, this is just 2 n by 2 digits 1, n by 2 digit multiplication; z naught which is x 

naught into y naught, both are smaller than n by 2. This is again 1 n by 2 multiplication.  

We only have to worry about and reason about this multiplication operation. Let us just 

observe that x 1 and x naught both are numbers smaller than 10 to the n by 2, 10 to the 

power of n by 2. When you add both of them how many digits can you get? So, that is 

you have 2 values which are 10 to the power of n by 2, and when you add the 2 of them 

how many digits can you have? You can have a maximum of n by 2 digits because both 

of them are smaller than n by 2.  

So, let us just go back to our example. Observe that 456 and 914 are 3 digit numbers. 

When you add both of them, at the most you can get a 4 digit number, right. So, let us 

just see this; you can have 999. You can have 999 a 3 digit number, added with another 

999 which is another 3 digit number, this is 1998. Observe that it is a 4 digit number. 



Therefore, the most important point that is been made is that if you add 914 with 678 you 

can atmost get another 4 digit number and not a 6 digit number, right. So, that is the most 

important thing. So, you do not get a 6 digit number.  

So, let us just see what the gain in the arithmetical. The gain in the arithmeticals we have 

3 multiplications of n by 2 digit numbers, we have 4 additions and 2 subtractions, we 

have 1 multiplication by 10 power n, 1 multiplication by 10 power n by 2, and the last 2 

do not are not counted as multiplications, they are just shifting operations or adding 0s, 

least significant 0s.  

So, let us just go back and calculate this. You see 1 subtraction as second subtraction, 

then you see 2 additions here, and then there is a third addition and a fourth addition, and 

there are 3 multiplication operations. So, therefore, let us formally analyse the gain in 

arithmetic. The running time of the algorithm that we have just written where we want to 

calculate the total number of multiplications that is our measure of running time, let us 

not count the number of additions and the shift operations, let us just count the number of 

multiplications. 

The number of multiplications on 2 n digit numbers is given by 3 multiplications on 2 n 

by 2 digit numbers. And if you multiply 2 2 digit numbers we can take this to be equal to 

4. This is easy to check. And this is called the boundary condition for this recurrence 

equation; what is a recurrence equation? The value for multiplying 2 n digit numbers. 

The number of multiplications, single digit multiplications to multiply 2 n digit numbers 

is given by 3 times the number of multiplications is to multiply 2 n y 2 digit numbers.  

The solution for this is given by n to the power of log 3 by 2, the solution for this is 

given by the value n to the power of log 3 by 2, and observe that log 3 base 2, n to the 

power of log 3 to the base 2, and observe that log 3 base 2 is smaller than 2. Therefore, n 

cube into the log 3 base 2 is smaller than n square; and n square is a total number of 

single digit multiplications in the simple method.  
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This bring us to the last module here which is the concept called a big oh notation where 

the focus is how do we compare a pair of algorithms. Observe that we have done analysis 

of running time of these algorithms by different methods; we use simple methods and 

sophisticated methods.  
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So, let us just look at the Karatsuba's method. We know that the Karatsuba's method uses 

10 to the power of log 3 base 2 multiplications, and this is smaller than n square. How 

does one capture this? We capture this using the big oh notation which will be the focus 



of the next lecture.  

Thank you. 


