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So far what we have done is we talked about two rules for complexity analysis very two 

very simple rules; one rule is what is called the sum rule, and other is call the product 

rule? What is the sum rules state? It my program P is made up of two program segments; 

P 1 and P 2. What do we mean by this have P 1 followed by P 2, and this is my entire 

program P, then the time complexity of the program P is max of be time complexities of 

P 1 of n comma P 2 of n. We have already saw where n comes from, n comes from the 

input to the program, it may be size or the value of the input itself. 

Now the second rule is a product rule. What is the product rule state? It is says that if I 

have a program P 1 like this, and within this I have a program P 2. What is the meaning 

of this? It tells me that P 2 is executed P 1 times, then the product rule the time 

complexity is, time complexity that is what is that we are saying the program is made up 



of P 1 times P 2, and therefore the time complexity of P - P is equal to the product of P 1 

of n into P 2 of n, this what we saw in the last lecture. So, we are two rules: one is sum 

rule, and other one which is the product rule. Now what we will do is will go through an 

example and see how these rules can be applied. So, what do I have there, I have a 

simple program let me write just re write it here it. 
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It simply computes the some of the elements in an array. So, it is says sum equal to 0 and 

for i equal to 0, i less than n, i plus plus. We compute sum is equal to sum plus a of phi, a 

is the array over here, we computing the some of n elements in the given array a. Now let 

us look at this program. Sum is equal to 0 is an assignment statement, and if I look at this 

entire program here I would say this is made up of P 1 and P 2. Now when I look at P 2 

by itself notice that this is again made up of there is a loop here; that means, this 

statement is executed n times. So, here in P 2 to analyze the time complexity of P 2, I 

need to apply the product rule. To analyze the time complexity of P 1, I am simply use 

the, but some rule. So, to for this one for the example, if I look at this what is this 

statement here, i is being initialized, i less than n, i plus plus. So, what ((Refer Time: 

04:07)), the worst case I will do three operations; initialization, comparison, and 

increment. So, this once time complexity is order one, because if max of all this all of 

them are constant time operations, and this is also constant time operation, but what are 



we seen the P 2 now. P 2 is made up of this segment, that is this for loop is executed, this 

executes this statement n times. So that means what, the time complexity is of P 2 is n 

times means what, if I look at the if let us say P 2 is made up of two parts; P 2 1 and P 2 

2, where P 2 corresponds P 2 1 corresponds to the for block and within that I have this 

sum which is computed. That means, what P 2 1 and P 2 2, this is what it corresponds 2; 

P 2 2 is executed P 2 1 times. Therefore, now I have to apply the product rule. What is 

the product rule tell me now? The product rule tells me that the time complexity of P 2 of 

P 2 is the time complexity of P 1, time complexity P 2 1 times the time complexity of P 2 

2. So, since the for block executes n times, it is time complexity is n, notice that the 

increment is you know i increases by 1 during every iteration. Therefore, this loop 

executes n times. 
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Therefore we have T 2 1 is equal to order n, and we already saw T 2 2 it is the max of 

these two is order 1. Therefore, the time complexity of the program segment P 2 T 2 is 

equal to n into 1 which is order of n into 1 which is equal to order of n. Now what do we 

have? We have the program segment P being made up of P 1 plus P 2, and therefore the 

time complexity T is now of T which is equal to T of n, because now I can apply the sum 

rule. Therefore, this becomes max of order one which comes from here program segment 

T 1, and order n, and therefore the time complexity is order of n. So, this is an example 



of time complexity. So, what have we done? We have used both the sum and the product 

rules to compute the time complexity. Let us now this is fine as for as programs with that 

are having regular for loops are concerned. 
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Now, if we looking at something else, let me leave you with this example. Suppose I 

have i equal to 1 while i less than n, do I am writing some ((Refer Time: 07:57)) here, i is 

equal to i star 2 end while, now again there is of the form, this is program P 1, this is P 2, 

again P 2 have the loop, but how many times that this loops executes, basically notice 

that i is getting double every time. So, if I say n is equal to, let us say 8 then i equal to the 

first time I have i equal to 1, then the second time I have equal to 2, i equal to 4 and the 

third time i equal to 8. So, if we look at it, it basically goes through this, this part of the 

program is executed only three times, and therefore in terms of n if you look at it; that 

means, how many times is a loop executed, it is only executed login times. That means, 

now and the cost of this statement over here is order one, this is also order one, but the 

loop is executed log n times, therefore the time complexity becomes order of log n. So, 

this is how you compute time complexities using the product, and the sum rules.  

Now this is all fine as long as there is a loop like this which you can you know all that 

we have done is we have kind of un ruled this loops ((Refer Time: 09:19)), how many 



times if the loop the executed, this is what we are doing here? And multiplying the 

number of times the loop is executed with a cost of the operation within the loop, there is 

how you defined time complexity over here. Now let us look at another example. This is 

slightly more complicated example, what happens when we have recursion, here is an 

example with recursion a computing, the factorial of a given number, let me rewrite this 

over here is saying. So, is basically like this the int fact over here, and what are we doing 

here? Again we can apply the same which but the only difference over here is that, we 

need to find out how many times the recursive call is made? And that will decide the cost 

of the computation.  
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So, if you look at it over here. So, what is it that I have we have fact, and we are saying 

some if n less than or equal to 1 then we are returning 1; values set to one in that is what 

we have written. That means, that is the only statement that is executed in the recursive 

function else value equals n star fact of n minus 1, and if here and we are returning value, 

this is what the function is return. So, let us look at this recursive function? What is the 

various thing that what have been done this statement is very harmless, what do we have 

here? We making one comparison here, and the cost of the operation, therefore this will 

be atmost order 1; that is then n becomes less than or equal to 1, the cost of the 

computation is only order 1, but when n is not equal to1, let say n is greater than 1 then 



what is that that we have? We have n star fact of n minus 1. That means, what I have fact 

of n, now this is calling fact of n minus 1 which is calling fact of n minus 2 and so on. 

Let us say I want to compute the factorial of 3, then the fact of three is going to incur; 

that means, what is that I am doing, within this now there is one multiplication over here. 

The cost of the multiplication is essentially going to be order 1, and the assignment for 

that matter is going to call order one here, and fact two again order 1, and so on fact to 

one which is again order 1. So that means, what to compute the factorial of 3, I do 3 

times order one operations. So, the recursive call essentially tells me that is going to 

three times order 1, n is a number over here which is this input, therefore the time 

complexity of this is going to be order n. And what we can do is what we have written 

there basically if we look at the particular loop here, which as order of 1 plus plus T of n 

minus 1. This is the way we write the time complexity for recursive functions. Let see 

what we do over here. So, what we do is to give you a nice simple way of doing it. So, 

we are saying there is some constant cost over here plus the cost of T of n minus 1, 

where this is the cost of the recursion. If n is greater than 1, it is equal to d just one some 

other constant cost, if n less than or equal to 1. So in general define at the ith iteration, ith 

recursion then T of n and what we done i's i time c plus T of n minus i, n is greater than 

n. Then i equal to n minus 1 what is happening, then there is only one c of… So, 

basically what happening i cost c of n minus 1 plus d. d is the cost of the last call to the 

recursion. And therefore, the time complexity becomes order n. I must one new this is 

not a nice algorithm to compute the factorial, because it is two expansive, but never the 

less this illustrates the problem of how complexity analysis can be done for recursive 

functions. So, this is…  
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So, basically in when you have recursive function the most important point is that, we 

write it we say T of n will take one more example, and a little while and we write T of n 

and both on the left hand side, and the right hand side in this particular computational 

just C plus T of n minus 1. So, you will find T of n is equal to define in terms of T of n 

minus 1 and so on, and you can solve this, you learn more about solving the time 

complexity for recursive functions in the next course, an algorithms where it will regress 

way of finding the time complexities will be given. 

So, we leave it here and now what I want do is, I want to take few more examples on 

complex, so this is so that I am sure that your absolutely clear about what is being done 

and let us look at this example of sorting and elements. So, I have a set of n elements by 

this; 10 7 15 25 32 20 and 3 12, that is given as input to my sorting algorithm and I want 

to get this output which is a sorted array. 

 

On the other hand if I am searching what am I doing, I am given sorted array, and I am 

let us say I am given the key equal to 12, and output should give me index of the where 

this element can be form. So, these let us look at these two problems. So, let us look at 



sorting. Will take a very simple selection sort algorithm, what the selection sort 

algorithm? It is a quite an inefficient version of the selection sort algorithm that I have 

written, all it is doing is it take is array over here, and what we does is let us look at this 

example again I have an array with something like this. What do I have? I have 10 7 15 

25 32 23 and 12.  

So, what is it do? When I look at a first loop, let us look at this I will ((Refer Time: 

16:09) what is doing, its assigning something call small to this element, i is pointing here 

and j is now pointing here. Then what it is do? It goes through this entire list and keeps 

on exchanging then the swap function I just use the swap function from the start very 

efficient to do it which should actually find the minimum in the array from I plus 1 to n 

and replace exchanging the 2 of them. So, what is it do now it comes keep on exchange 

this, 7 7 will be exchange then I can 7 is in the beginning here, 7 and 15 is find 7 is 

smaller than 15 remain as it is. Then it will compare 7 with 25, 7 with 32 and then comes 

with 3 here, and ultimately what we will have it is something like this at the end of the 

first loop. 

So, I would have here 3, I will have 10 here, I have 15 here, 25, 32, 20, 7 and 12 after the 

first pass. So, what are we done one execution, that is one’s I have gone through the 

entire array, the most minimum element is that the beginning. Next what we do, we make 

this small and this is i, this is j, and then we compare again find the smallest element 

smallest element is put he, and this is repeated until we are exhaust the array. Now when 

I look at the time complexity this program, this program is of the form P 1 into P 2 into P 

3. What is P 3 now? P 3 corresponds to this int this loop over here. So, there are two for 

loops; one for loop is inside the another for loop, each for loop is executed n times. So, 

now let us look at...  

So, the for loop with j as index is inside the for loop with the index i, P through 

corresponds to the segment inside the second for loop, P 1 and P 2 corresponds to the i 

and j loops respectively. So, that means what do I mean over here going back to this. So, 

this corresponds to P 3, this corresponds to P2, and this corresponds to P 1. And we will 

P 1 again, there is one there is a some rule small plus this loop. Therefore, the time 

complexity become an order n now by now your quite familiar with this, this loop 



execute n times, the cause of this operation is order one. therefore, this is order n that is 

within the for loop, and then this for loop is again execute n times therefore, this total 

time complexity this comparison operation cause order one. So, this becomes within this 

for example, if I look at the body of the ith for loop, the time complexity of the ith for 

loop is basically order means, our body of the ith for loop is order n.  

Therefore, order n multiplied again this executed n times, therefore the time complexity 

of this becomes order n square which is what i summarized here. The for loop of j index 

is inside the for loop with the index i, quickly correspond to the segment inside the 

second for loop; P 1 and P 2 corresponds to i and j loops respectively. So, basically you 

are executing two for loops, therefore the time complexity is order n square. Now let me 

leave you with another function which was a nice is a which is a interesting and efficient 

more efficient sorting algorithm then the input permutation is very quite random, and this 

is called the quick sort algorithm. The quick sort algorithm you learn on the algorithm 

scores and what is interesting over here is, this is a recursive function and what does the 

quick sort algorithm do is simply take this an array over here divides it into two parts, 

and then recursively sorts the element, and what happens is goes on until that is divides 

into two parts and I am divides into two parts, what is it ensure? That elements on the left 

side of the middle element as smaller and the elements on the right side of the middle 

elements are larger, the first part is will do that. The next part what will do recursively do 

this again for this part, and in the best case if you a middle element is actually the median 

in the array at every time.  
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What we will find is that the depth of the recursion notice that in the program quick sort 

is being called again and again it may be atmost, so I have two labels like this, next it 

will become items of two elements long, finally you will have items which are one 

element long. So, the depth of the recursion is only log n. But in each recursive call all 

the n elements of process, because you have one part here, this is n by 2 element being 

process, this is n by 2 elements being processed, and this is again n by 4 n by 4 and so on 

in this particular case. Finally, you have one element being the process, this the best case. 

Why do I say called is best case, that is an every recursive call, we assume that the 

middle element corresponds to the median element in the array. Then the number of 

recursive calls, there are required is at most log n to the base 2, but in each recursive call 

one call is doing n by 2 elements here, and other call because the recursion recursive call 

to n for example, that is makes two recursive calls over here, both on the left and the 

right, therefore always n elements are looked at, therefore every time doing some n 

comparison. So, n into log n is the time complexity of this algorithm. So, this have you 

do these operations. All assignment statement, expressions, and so on so forth, the 

essentially cost order one. So, each recursive call divides the array into this is the best 

case that I am talking about, in each call all the n number are compared recursion 

terminates when the array size becomes 1. And therefore, the number is a recursive calls 

is log n in the best case, and order n log n is a time complexity for the best case of this 



algorithm, I encourage you to go back and verify this. I also want to verify that the time 

complexity only given for the best case is also true for the average case; average case 

((Refer Time: 23:04)) about is little more involved, you will find that in the worst case 

what can happen is that? The array is divide into two parts such that; one part is the size 

n minus 1 and other part is the size 1 and if it happen recursively then the depth becomes 

n and you will get a n squared worst case algorithm, I want you to verify this case. Now 

let us look at searching, now let us do simple thing is next do linear search. Now this is 

again a short of inefficient algorithm and just I assuming that.  

I have a set up n elements which are not necessarily sorted, and all I am going to do is I 

am going to search through this I have an array like this, and search through the array to 

find whether there the whether given element is present or not, this is very straight 

forward. So, what is that we are doing over here, this the initializing flag found to 0, and 

while less than or equal to n and and not found, if array of i equals k found equals 1, 

otherwise return a found. So, in the worst case the time complexity that is if the element 

is the last element I am looking for 12 as I have looked here, then linear search 

essentially searches through the entire array, and determines whether the element is there 

or not, therefore the time complexity can be ordered n, it is a very, very straight forward 

algorithm. Now what I am going to do is am going to do one more algorithm ((Refer 

Time: 24:40)) which is called binary search, and in binary search that as you assumption 

is that we have a sorted array, and in this example what would be my sorted array, this 

could let us assume that use the sorting algorithm which I have already have and I am 

going to perform search on this search on this. 
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So, this will be 3 7 10 12 15 25 20 25 and 32. So, let us see this the output that I have. 

Now I want a search for this element 12. So, what is done in binary search is somewhat 

difference. So, because it is already shorted, all that we need to do is we divide the array 

into two, and find out now what is the given, the key is given the difference is I look for 

the element key equal to 14. Then I compare with where this key might be present, key 

equal to 12 is work it you mean. Now I check whether it can be in the first part of the 

array or the second part of the array, then what I do is I search depending upon which 

will part it my belong to, then we can do this recursively again again divided into two 

parts, that is what that algorithms is doing. So, what is doing is, if key key is greater than 

array of middle then it searches from middle plus 1 to upper, otherwise it searches from 

lower to middle.  

So, what is initially middle now, what is lower now, lower is the starting point of the 

array, upper is the end point of the end index should be array. So, it is searches in the 

appropriate portion for the key. So, what is happening is every time the search space is 

getting reduced into half. So, that I am looking at 12, the next time I am only searching 

in this part. Next time I am searching only in this part, and then finally I am searching in 

this. So that means what the array size which was 8 long becomes 4, 2 and 1; and when I 

((Refer Time: 26:49)) 1, then if there element is equal to the key that I am searching for I 



have found the element and this the essentially the idea mind research. So, now, if you 

look at it, what is the time complexity of it, notice that in the first case I come made one 

comparison, every recursive call does only one comparison. Therefore, that is constant 

time, therefore the total time complexity of this is, because in the recursion I am running 

it up to log n times in to 1, and therefore the time complexity is order of log n to the base 

2 for the binary search algorithm. And this is what I have summarize to become. 


