
Programming Data Structures, Algorithms 

Prof. Shankar Balachandran 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Module - 13b 

Lecture - 19 

Functions to handle strings; Length, copy, concatenate 

Lexicographic ordering 

String comparison 

String function in library C 

 

There are functions to handle strings, so we will see the notion of functions itself in little 

a detail later. 

(Refer Slide Time: 00:12) 

 

So, the primary thing is string is not a basic data type. So, you have characters, integers, 

floating points and so on, they are all valid data types and valid basic data types, whereas 

the notion of a string is not a valid data type. So, there are other languages like C plus 

plus, java and so on, where string is actually part of the basic data type. Unfortunately in 

C, it is not. So, what it requires is you have to do something called a derived data type. 

So, when I said a string is an array of characters, so it is actually an aggregate data type 

of characters, you have several elements which are all of the same type. So, it is an 

aggregate type where you have more than one element of the same type. And to 



manipulate various things with functions, we will look at what are called string functions 

later. 

So, the notion of functions itself is not too big, so the idea of functions is if you do 

something repeatedly, instead of you doing it every time, you typing the program every 

time, you type the program into what is called a function and you call the function once 

in a while. So, just like printf and scanf and so on, these are functions that you are 

calling, you did not a write printf and scanf. So, we will see the notion of how to write 

functions, how to specify them and so on later. 

But, as of now various operations is related to strings, we will see what functions are out 

there that C provides. So, the typical functions on strings are finding out the length of the 

string, let us say I give my name, I want to find out the length of the string. So, I need 

there are functions which can go and count the characters in my name and tell me the 

number of bytes required. Given two strings, I can ask whether the two strings are equal. 

What I mean by that is, so two strings are said to be equal, if it has the same sequence of 

characters. 

And we can ask a question like is something a sub string of the other or I have two 

strings, I want to attach one string to the other and so on. So, there are functions for each 

one of these, these functions are available and given to you in a library called string 

library to invoke functions or these methods from the string library, you need to include 

what is called string dot h. So, just like for printf and scanf you included stdio dot h for 

doing various string operations, we will need string dot h. So, one thing we are going to 

do in this class initially is that, we will write these functions ourselves or we will write 

these programs ourselves and then, I will finally show you how to use the C library calls. 



(Refer Slide Time: 03:01) 

 

So, let us say I give you a string and I want you to find out the length of the string. So, in 

this example we have string A and let us say string A has Hello space world followed by 

a back slash 0 and I want to find out the length of the string. So, what is the length of the 

string? I will start from location which contains H and have to keep checking till I find a 

back slash 0. So, when I find a back slash 0, I know that it is the end of the string, 

because that is how C understands strings. 

 So, anything which is a valid sequence of characters ending with a back slash 0 is a 

string. So, you go and concentrate on this segment of the program, it is starts with i 

equals to 0, we have i which is 0 and A of i is h to begin with. So, it is starts looking at 

that and it keeps adding, so you can see that in the loop, we are incrementing i by 1, 

every time I see a non null character. So, the null character is back slash 0, every time I 

see a non null character, I will increment i by 1. 

So, i starts with 0, the moment I see H, i is changed to 1, now I look at e, then e is a non 

null character, i is changed to 2, I look at l and so on. So, if we keep looking at it, I will 

see that the length of Hello world is 11, so you have... So, when i equals 11 you have 

back slash 0, so remember this is A of 0 and this location is actually A of 11. When i 

equals 11, this is the 12th time we are running the loop. So, i equals 11, it is a back slash 

0 character. 



So, what you actually have is length of this valid letters, so the array containing all these 

valid letters excluding back slash 0, so that is the length of the string. So, Hello world 

has 11 characters in it, so remember there is a space in between. So, what we have is we 

have i equals to 0 and we have a loop that does it, so do not worry about this notion of 

return and string length and so on, we will see that in a little while. 

So, this is actually a function which takes A which is a pointer to the array and it finds 

out the length and it returns the length. So, we will see this notion of passing A and 

returning the values and so on in a lecture on functions later. So, the basic idea is what I 

want you to grasp. 

(Refer Slide Time: 05:34) 

 

Let us look at another function in which I want to copy the contents of array A to B. Let 

us say, array A is of some length and array B is of something else and I want to copy 

array A to array B and the way to do that is, so I want to go and look at size of this array. 

So, what I want to do is I do not care about what is present in B, B could be actually of a 

size which is different from A. I also do not care about what are the contents of B already 

in place. I want to copy byte by byte or character by character, the contents of A into 

contents of B. 

So, the H in location 0 of A should be copied to location 0 of B. For example, this l 

should be copied to this location, this back slash 0 should be copied here. Because, I am 

supposed to copy the whole string and the notion of a string is only if it is terminated by 



the null character. So, that is what this program segment does, so int N1 is string length 

of N1. So, remember I wrote this thing called string length, if I past Hello back slash 0 to 

it, it will tell me that the length of the string is 5 and we have k equals to 0, k less than 

N1, k plus plus. So, it will go from 0, 1, 2, 3, 4 and you will keep copying contents of 

location A to B. 

So, at the end of this you actually have to make B of k equals back slash 0 or you could 

actually change this to equal to. So, this only copies all the valid characters, we still need 

to do the last one, so we need to write B of k equals back slash 0. This is one way to do it 

or you change this condition to equal to, either one of them will take care of copying the 

string including back slash 0. So, one thing that this segment does is it ignores whatever 

was stored in B earlier. 

So, there is a certain problem here, let us say A had only 4 bytes, so let us say A was all 

these bytes whatever number of bytes, but B does not have enough space to copy the 

contents of A. This will be a problem, because you are going to start looking at B and 

when I start looking at B, I am going to look for back slash 0 as a possibility. And for 

whatever reason, let us say I did not have any of this space, I would have copied H e l 

and l, but I did not have enough space for o and back slash 0. 

This should be a disaster, because my array has lesser space than what it really needs. 

This is not something that you have to handle it explicitly, if B has lesser space than A, 

what is it mean to say copy the contents of A to B, you have to be careful about that. 



(Refer Slide Time: 08:28) 

 

Then, let us look at this function called string concatenation or the idea of concatenation. 

Let us say I have this string called world and I have a string called Hello and I want to 

make a single string Hello World. So, that is called concatenation, what I really want is I 

want to copy W to this back slash 0, o to the next location or to the location after that and 

so on, including back slash 0 of B to be copied here. The results I expect is Hello which 

were the contents of A followed by the contents of B, which is World followed by back 

slash 0 which says that this is the termination of A. 

So, I am trying to concatenate B to A and as a result I want this, so you can see how this 

is supposed to be done. So, clearly A must have space for copying B to the end of it, so if 

A had lesser space than the size of B plus A included, there is a problem. So, in this 

example it is not a problem, but if B were something much larger, then concatenating B 

with A, you will run out of space in A. So, in this example however, it is not a problem. 

Once we did the concatenation, so up till here is what you got from A, from here to here 

is what you got from B and this is the extra character that you have to add to the end to 

ensure that when you now treat A as a string from left to right, it terminates with B. So, I 

am going to leave this as an exercise for you to go and write a program on your own. 



(Refer Slide Time: 10:12) 

 

Finally, let us look at the notion of ordering strings and so this is something that we do in 

our daily life. So, if I go and pickup dictionary I may want to go and look at what all the 

order in which the words are occurring. So, in this slide I am looking at names of people 

or words, so let us look at the word Badri and word Devendra. So, clearly if I go and 

arrange them in dictionary, the word Badri will come before the word Devendra on the 

dictionary. So, I will say that word Badri coming before word Devendra, I will use the 

notation less than for it. 

So, Badri comes before Devendra is expressed as Badri less than Devendra. Let us look 

at this example, Janak is less than Janaki, so Janak has only five characters whereas 

Janaki has six characters, so clearly if you go and look at dictionary, all the smaller 

words will appear before all the bigger words. So, in this case Janak is a smaller word 

than Janaki, so even though the first five characters of both these are same, Janak has one 

less character than Janaki. So, therefore, we will say that Janak is less than Janaki. 

Then, if you look at this example, Shiva is less than Shivendra, because if you go and 

look at the fifth character, it is A here, the fifth character here is E. So, clearly A will 

come before E in the dictionary, so Shiva is less than Shivendra. Then, Seeta is less than 

Sita, so Seeta is less than Sita, so we are not looking at the size of the string alone, we are 

also looking at dictionary ordering. So, clearly Seeta will come in the dictionary before 



Sita. Even though the length of Sita is only four, Seeta is of length five, in English 

dictionary you would see Seeta before Sita. 

Then, there is something peculiar about characters and languages. So, one thing that is 

true in Machines is that all the upper case letters in an alphabetical order appear actually 

before all the lower case letters. So, this is a property of how the machine treats various 

characters. All the upper case letters are supposed to be lesser than all the lower case 

letters and with in the upper case letters A is less than B and so on up to Z and within the 

lower case letters, a is lesser than b and so on up to z. 

But, capital A is actually less than lower case a, capital Z is less than lower case a and 

lower case z and so on. Because of that if I go and look at this example, capital B Badri 

is actually less than small case b badri. So, in dictionaries you do not really have make a 

distinction between upper case and lower case, but in programming, strings can be 

difference. So, lower case could be different from upper case, so we have to be careful 

about that. 

As a final example, Bad is actually less than Badri with capital B, because Bad has three 

characters and Badri has five characters. So, this is similar to this Janaki and Janak 

example. So, in fact Bad is also less than Badri, so that is also true, because Bad is 

actually three characters in length and so Bad starts with the capital B and whereas badri 

starts with lower case b, so this is also true, so this is called lexicographic ordering. 

So, just remember that it is just like dictionary ordering, with the one extra addition that 

lower case letters are considered to be coming later than upper case letters. So, we will 

also have to deal with blanks and other things for example. So, let us look at this 

example Bill Clinton and Bill Gates. 



(Refer Slide Time: 14:16) 

 

So, if you go and arrange them in order, Bill Clinton should actually come before Bill 

Gates, so the space itself should not matter, so C comes before G. Therefore, if I go and 

look at character by character from the left side of this and character by character from 

the left side of this, so B and B match, i and i match, l and l match, l and l match, space 

and space matches, C is actually less than G, therefore Bill Clinton is less than Bill 

Gates. 

So, I am not making any comment over their personalities, so in terms of a string Bill 

Clinton is less than Bill Gates. Then, let us say we have this example Ram Subramanian 

and Ram Subramanium. So, here up till i the characters are the same, whereas when we 

look at this character a and this u, a is less than u therefore, the string Ram Subramanian 

is less than the string Ram Subramanium. And finally, if we go and look at this example, 

Ram space Subramanian verses Rama space Awasthi. 

So, Ram space Subramanian is supposed to be lexicographically earlier than Rama space 

Awasthi. The reason is that if you go and look at the first three, they are matching Ram 

and Ram, the fourth character is a space whereas the fourth character is a and in storage 

space gets a code 32 and that comes before the code for a, which is actually 97. So, the 

code for lower case a is 97, so code for space is 32, so since space comes before any 

valid letter in the sequence of characters, Ram space Subramaian is less than Rama space 

Awasthi. 



(Refer Slide Time: 16:05) 

 

So, there is a small program that I have written here which goes and looks at comparing 

two strings str compare. I am assuming that there are two strings A and B, so this is 

supposed to be a comma here and let us assume that there are two integers N1 and N2. 

N1 is supposed to be the length of A and N2 is supposed to be the length of B. So, I want 

to find out, if when I compare A and B, whether A is less than B or A equal to B or 

whether A is greater than B. 

So, let us look at the examples on the right side, if A is Hello and B is Hello, then A is 

actually equal to B. So, for this example this one, this condition A is actually equal to B. 

In this example, the second one A equals Hell and B equals Hello, so the set of 

characters first four characters are the same, but A does not have the fifth character, 

whereas B is a longer string. So, therefore we claim that A is less than B, like I said 

small words will come in the dictionary before bigger words. 

And if A is Hello and B is Hell, A is actually greater than B, then in this example the 

both are of the same length, the length is not matter, but if you look at the second 

character there is e here and there is u here. Therefore, in the dictionary Bell will come 

before Bull, therefore string A is before B and in this example, Hull is and Hello, Hull 

will come in the dictionary after Hello, so we have A greater than B. So, these are some 

examples I want to be able to handle all such cases. 



So, let us starts with the first one A equals B. When will I have two strings to be equal? 

All the characters of A must be the same as the characters of B and the length of A 

should be equal to the length of B also. In fact every character including back slash 0 

should be matched from A to B. If all the characters including back slash 0 are exactly 

the same, then in the order for A and B, then A is supposed to be equal to B. 

Let us see, how to detect conditions A less than B. What are the two cases in which A is 

less than B? I have matching characters for A and B, but A ran out of characters, so in 

this case Hell has only four characters and Hello has five valid characters. I ran out of 

characters in A to compare with B, in that case A is less than B or I do not ran out of 

characters, but I am still in the middle of checking characters, but I see that some 

character in the middle is actually less than some character at the end. In this case also 

we have A is less than B. 

So, these are the two conditions or examples for which A is less than B and for 

everything else, we already considered A equals B and I showed you, when A is less 

than B, in all the other cases A is supposed to be greater than B. So, this program that 

you see on the left side is supposed to take care of printing whether A equals B or A less 

than B or A greater than B based on these checks. So, let us see what this loop here is 

supposed to be doing. 

So, k is initially initialized to 0, we are starting with the 0th character of both A and B 

and if both the characters of A and B match and if I have not exhausted A and I have not 

exhausted B, then I can go and look for one more character. So, if I keep doing this, k 

will keep incrementing. So, if I start with let us say Hello and Hell, k is supposed to point 

to the 0th character of both. So, let us say this is my A and this is my B, so k initially 

starts with pointing to H, these both are same I increment k. 

So, k now, so A of k is e and B of k is e, these two are same. Then, I increment k, now A 

of 2 is l and B of 2 is l. So, as long as things are same I have to keep moving and I will 

stop, when either the condition that the characters are same is violated or I ran out of 

characters in either A or B, so that is what these three conditions are doing. So, now let 

us go and see there are three ways in which you could have come out of this loop. 

Either, you violate this condition or you violate this condition or you violate this 

condition, you could have come out because of violation of any of these. If A of k equals 



B of k for all the characters that you saw so far, then at some point you are N1, you 

would have hid N1 the end of A and you would have hid N2 which is the end of B. So, if 

N1 is actually equal to N2 and if k equals N1 which means you have looking for equality 

in A and B, then A and B are equal. 

So, that is the example we have on the right side Hello and A equals Hello and B equals 

Hello are actually the same, else you ran out of characters in A, but the first set of 

characters N1 characters in A and B are the same. But, you ran out of characters in A, 

there are more characters in B to process which means you have a word which is shorter 

than the other word and so for example, Hell is shorter than Hello and Hell is a prefix of 

Hello. In this case A is less than B. 

If you ran out of characters in B and if you still have characters in A and if the first N2 

positions matched, then you print A is greater than B. So, we have taking care of three 

cases where we hid in some sense back slash 0 So, in this case we hid back slash 0 on 

both of them with the same time, in this case we hid only on A of 0, in this case we have 

hid only on B of 0, none of these need to be true. For example, in Bell and Bull, I do not 

have to go to the end of the array to see that Bell is less than Bull. 

As soon as I see the 1th location, I see that e is less than u therefore, A is less than B, so 

that is what you are doing here. I did not run out of characters in either A or B, however 

so there are still more characters to process in A and B, but however I found something 

lexicographically different. So, A of k is less than B of k means A is less than B, in this 

case Bell is less than Bull or I started looking at H in both of these, I see that in the next 

location u and e, u is actually greater than e. So, Hull should come after Hello and 

therefore, A is greater than B. 

So, this is the way in which you can write the program for string comparison. So, we 

looked at three programs, one to find out the length of the string, one to concatenate and 

one to copy and finally, we now looked at comparing two strings. So, one thing that I did 

not show you is for concatenation, I did not show you how to write the program. So, we 

can keep writing all these things every time, but it is a laborious thing. So, for integers 

and floating point and so on, we had plus and minus and so on which are basic 

operations. 



However for strings, it may be useful to have some of these things given by the 

programming language. Unfortunately C does not give that, but C gives it you as a 

library. So, these are all built in string functions. If you do hash include string dot h, it 

has several built in functions. 

(Refer Slide Time: 24:17) 

 

So, for example you have a function called strlen. If you pass character array to it, it will 

find out the length of the string excluding the length of the null character and return an 

integer. So, strlen is a function which takes a character array as a parameter. So, it takes 

pointer to a character array and returns the length of the string. So, you will see the 

notation and meaning of this in a subsequent video on functions, so you can treat these as 

a inputs that is given and this is the output. 

So, the input is of type string and the output is of type integer, strlen is the name of the 

function. It takes a character array or pointer to a character array as an input. So, it has a 

program like what we saw for the length inside which actually goes and looks at every 

single character and finds out back slash 0. It reports the length and returns an integer. 

There is a function called strcpy, so you take two parameters character star destination 

and character star source. 

So, if you give strcpy of A comma B, it will copy contents of B in to A. So, clearly 

destination must have a size which is at least as large as the size of source. Finally, there 

is another function called strcat. So, again as before we have destination and source, so it 



will take source and concatenate it to destination. So, destination must have space at least 

as big as the original string that you had plus the new string that you have concatenating. 

So, these are things available from as built in functions from C itself and we can write it 

on our own, but we are prone to making mistakes, instead we use libraries given by C to 

do this. So, these are three basic things that you may want to use. So, there is another 

function called strcmp which can also come in handy. 

(Refer Slide Time: 26:18) 

 

Strcmp takes two parameters as inputs which are both pointer to arrays and it returns an 

integer. So, we wrote a program which printed things on the screen as A less than B, A 

equal to B and A greater than B, instead it returns an integer. So, if both s1 and s2 are 

equal strings which means, if I gave Hello and Hello as s1 and s2, then both strings are 

equal, you will get 0 as the result. Instead of printing on the screen it gives you an 

integer, you can go and look at the integer value and decide, whether they are equal or 

not. 

You get 1, if the first string is lexicographically greater than the second string which 

means, in the dictionary if the word pointed to by s1 will come later than s2, then you 

will get 1. You will get minus 1 as the return from strcmp, if s1 will be in the dictionary 

order before s2. So, you get three values 0, 1 and minus 1 depending on whether A 

equals B and whether A greater than B or whether A is less than B. There is also another 

function called strncmp. 



What it does is, instead of comparing all the characters including back slash 0. It will 

compare only the first n characters of two strings. So, if I have string s1 let us say, this is 

of size 10 and let us say s2 is an array of size 15 and if I specify size as 4, strcmp will 

compare only the first four characters, it will not go till the end of s1 or s2, it will go only 

till the first four characters and it will give you a comparison of the first four characters 

of A and B. It will still returns 0, 1 and minus 1 by comparing only the first n characters. 

So, this brings me to the conclusion of strings, this is something that can come in quit 

handy for you. So, later you will see programming exercises which are actually on 

strings. So, I suggest that instead of writing things on your own, you go and use the 

functions that are given in the string library. All you have to do is do hash include string 

dot h and just like printf, scanf and so on, you call functions by passing appropriate 

parameters. So, how to pass parameters and so on will probably become clear, once you 

go through the video for functions. 

So, thank you very much and see you in the next lecture. 


