
Programming, Data Structures and Algorithms 

Prof. Shankar Balachandran 

Department of Computer Science and Engineering 

Indian Institute Technology, Madras 

 

Module – 12 

Lecture - 12 

Module Debugging: Demo Module 

Contents 

Demo of debugging 

 

 (Refer Slide Time: 00:21) 

 

Hello all. In this small demo of the debugging environment, I want to show you some 

specific features in debugging and how things work with debuggers. So, we will go back 

to this program, where we were looking at prime numbers. Just to recollect, we declare 

the 2 and 3 will be prime numbers. And for the other prime numbers, we will actually go 

and evaluate based on this small logic that we discussed. If some… For a number p, we 

are going to check against all the prime numbers that are less than it. And if it is even 

divisible by one of them, we will declare that, that it is composite; otherwise at the end of 

checking all the prime numbers, if the number is still not divisible, then we will say that, 

p is prime. So, let us switch to the programming environment. 



(Refer Slide Time: 00:59) 

 

We saw this program earlier. 

(Refer Slide Time: 01:04) 

 

And the only modification that we have is I have defined N to be 10, so that we can 

quickly see what is happening. So, one aspect of this debugging is essentially that, if 

there is a small error in the program, how do we find it out? So, I can always go and run 

the program multiple times or I can put printf statements in multiple locations and track. 

But, that is not the best thing to do. So, if the programs get very large, then the printf's 

can be very annoying. So, instead, many ID is including del C plus plus; give a very nice 



mechanism for debugging. And that is what we are going to do. So, there are two things 

that we are going to do when we have a debugger. The first thing that we are going to do 

is set of border called break points. So, generally, what happens is your program starts 

executing at line number 6 let us say. 

(Refer Slide Time: 01:51) 

 

And it executes till line number 27. And you do not get to see any of it; you only see the 

program running and you should get to see the final result. 

(Refer Slide Time: 02:04) 

 



But what if I want to see what is the effect of each of these lines? So, I will do single 

stepping and I can take one line at a time and show the effect of each of these lines; and I 

will also set up something called a break point, so that I can see how things should run 

up to the break point. So, let me illustrate those. So, what I am going to do is I am going 

to set up a break point at line number 8 by pressing on key F4. The moment I press that, 

you can see that, the background of that line changes to red and there is also a small tick 

mark on line number 8. I am also going to set up a break point on line number 12. So, I 

have set it up for break points at eight and 12. So, what is going to happen is – when the 

program is run, it will not run all the way; first, it will break just before line number 8 

and after that if I continue running the program, it will break at line number 12 and so 

on. So, remember line number 12 is inside the loop. So, it will break; every time, it will 

give us a chance to inspect values at line number 12. So, to actually look at the values, 

we need a few other things. 

(Refer Slide Time: 03:11) 

 

So, I am going to click on debug, so that the debugging is turned on. And I am going to 

add watch on a few variables. 



(Refer Slide Time: 03:20) 

 

So, what are the variables of interest? I want to see what primes is. 

(Refer Slide Time: 03:23) 

 

And if you see that right; so primes seems to have all these values, which we really do 

not want. And this is the first thing that you should be observing. So, there are values of 

primes. And since primes is uninitialized, remember we are in… We have still not 

executed the program; we are just in line number 8. So, we do not know what values 

must be there for primes. Let us also watch p; which is the value that we want. We watch 

i. Let us watch prime index. And finally, let us also watch isPrime. So, I want to show 



how these things change as we run the program. So, watch the left side; you will see all 

these variables that are there. 

(Refer Slide Time: 04:13) 

 

And let see what happens now. So, as of now, I am going to do F7, which is single step. 

So, it will go one line at a time. So, primes of 0 is now 2 and primes of 1 is 3. So, as I 

keep pressing F7, it goes one line at a time and whatever line is to be executed will be 

highlighted. So, as of now, line numbers 8 and 9 have executed. So, 2 and 3 went to the 

first entries in primes. So, now, I go to line number 10; I execute it. So, prime index 

became 2. So, I am going to start filling up prime numbers from location 2 onwards. So, 

as of now, 2 and 3 are correct; I am going to start filling up from location 2 onwards. 



(Refer Slide Time: 05:03) 

 

And what is the value now? p is 5; I am going to check whether 5 is prime or not. I 

assume that, it is prime to start with. So, now, the whole program is ready for running. 

We have various things; 2 and 3 are already in place; I know p equal to 5; I have to start 

checking from 1 onwards and see if it is divisible or not, and if so we are going to see if 

this is Prime changes. 

(Refer Slide Time: 05:31) 

 

So, let us start moving. i is 1. So, the first… I am at line number 15; p at this point is 5; 

primes of i. So, primes of 1 is 3. So, this line is checking if 5 percentage 3 is 0 or not. It 



is not 0. So, this line will not execute. And let us look at prime index; prime index 

became 2. 

(Refer Slide Time: 06:05) 

 

And i is also 2. So, you go and check if this is prime or not. The flag has not changed. 

So, 5 is a prime number; you record that. So, if… Once I finish line number 19, you will 

see that, this location – this 53 will change to 5. 

(Refer Slide Time: 06:25) 

 

We can see that now. 



 

(Refer Slide time: 06:28) 

 

And prime index is 3. So, now, we are ready to see whether the next odd number, which 

is 7 is prime or not. So, let us continue now. 

(Refer Slide Time: 06:38) 

 

So, we are ready to check whether 7 is prime or not. We go back and assert 7 is prime. 

And I am going to check from 1 to i less than prime index. So, prime index is 3. So, I am 

going to check 7 against 3 and 5. 



(Refer Slide time: 06:56) 

 

So, first, you check 7 against 3; it is not 0. 

(Refer Slide Time: 07:02) 

 

Then, you check 7 against 5; it is also not 0. So, its prime does not change. So, its prime 

remains at 1. 



(Refer Slide Time: 07:12) 

 

So, primes of prime index is – you can record 7; you will see a change here; it changes to 

7. 

(Refer Slide Time: 07:15) 

 

And prime index will change to 4. So, we are trying to find out the next prime number. 

Then… 



(Refer Slide time: 07:22) 

 

Now, we are checking 9. We assume that, 9 is prime to start with. Then I am going to 

check against all the numbers from 3 to 7; I am going to check against 9. 

(Refer Slide Time: 07:33) 

 

If p percentage primes i equal to 0; so 3; 9 percentage 3 is actually 0. So, this is the first 

time, this line is executed. 



(Refer Slide Time: 07:44) 

 

So, isPrime become 0. As I said earlier, we are checking still against 5 and 7. 

(Refer Slide Time: 07:48) 

 

So, we check against 5; then we check against 7. 



(Refer Slide Time: 07:55) 

 

And the key thing is isPrime is 0 at this point. So, since isPrime is 0, this block of code 

from 18 to 20 will not execute; and we are going to now go and check the next number. 

(Refer Slide Time: 08:09) 

 

So, p is 11. So, 11 is actually greater than 10. So, at this point, you exit out of this loop 

from 12 to 22. Now, ready to print all the prime numbers. So, at this point, you can see 

that, prime index is 4; which means the first four entries starting from 0-th location till 

third location have valid prime numbers. So, that is what we are going to do. 



(Refer Slide Time: 08:35) 

 

We can check and print prime numbers. 

(Refer Slide Time: 08:37) 

 

So, print 2. 



(Refer Slide Time: 08:39) 

 

Print 3 

(Refer Slide Time: 08:40) 

 

Print 5. 



(Refer Slide Time: 08:41) 

 

Print 7. 

(Refer Slide Time: 08:42) 

 

And we are done. So, at this point, we are done. 



(Refer Slide Time: 08:50) 

 

So, if we go and look at this, we already see 2, 3, 5 and 7 printed. 

(Refer Slide Time: 08:59) 

 

And once this is all over, you can stop the execution. So, this program is actually correct. 

I can stop the execution and so on. 



(Refer Slide Time: 09:03) 

 

So, what you are really seeing is this break point gives you an opportunity to start from a 

particular. So, let us say these break points 8 and 12. If I start at 8, it actually gives me an 

opportunity to run till 12 without executing the lines in between. Even though I was 

doing single stepping, I actually showed every single statement and how it was 

executing. You do not really have to do that. So, let me quickly demonstrate that. 

(Refer Slide Time: 09:33) 

 

I am going to run one more debug now. 



(Refer Slide Time: 09:34) 

 

Again, I am watching all these things. You can see that, all these prime numbers and so 

on are invalid. 

(Refer Slide Time: 09:42) 

 

So, I start running the program. So, primes of 0 is 2. 



(Refer Slide Time: 09:48) 

 

Then, I can press continue; it will take me to the next break point. So, at this point, it 

went from line number 8 to 12 directly without showing each of these steps. So, now, 

since the next break point is 12 and it is inside the loop from line number 11 to 22; if I 

click on continue, we will do everything that is required for the loop and go to the next 

time when the p itself is changing. 

(Refer Slide Time: 10:16) 

 

So, p changes to 7. You can see the left side; p changes to 7; 



(Refer Slide Time: 10:19) 

 

p changes to 9 and so on. So, all the things that were happening here; all the work got 

done; it is not that, the work did not get done; the work got done; but you are waiting at 

line number 12 and seeing what is happening. 

(Refer Slide Time: 10:35) 

 

So, at this point prime is… You are still checking for 9. And the whole thing got done 

now. 



(Refer Slide Time: 10:43) 

 

You can go and see that, the program is executed. And if I… We have run till the end of 

the program. So, at this point, you can stop the execution. And all the values from 2, 3 up 

to 7 are already in the primes array. So, you can use the debugger for debugging various 

programs. This is a very effective tool. I suggest that you get used to this debugging, so 

that you can check all your programs once before you go and do your home works on the 

left side. And this is a very useful utility. So, I cannot emphasize this more. You have a 

good handle of how the debugger is used. And you do not have to print screen – fulls of 

debugging statements; instead, use the debugger effectively. So, the key trick will be in 

finding out what variables you want to watch and where to set your break points. So, I 

knew this ahead of times. So, I had set break points at line number 12 and line number 8. 

But, you have to be careful about where you are setting the break points. It does not 

make sense to set break points at every line. 

Thank you very much. 


