
Programming, Data Structures and Algorithms 

Prof. Shankar Balachandran 

Department of Computer Science and Engineering 

Indian Institute Technology, Madras 

 

Module – 01 

Lecture – 01 

Introduction to Computers 

 

Welcome to this online course on programming. I am Shankar Balachandran from the 

Computer Science Engineering Department at IIT, Madras. This course is designed in 

such a way that it can be spread across 5 weeks and you are going to have about 2 

lectures every week. So, total of 10 lectures and this course is also designed in such a 

way that you can take this in 15 minutes chunks called modules and you would be given 

a small practice test, right after every module. So, let us jump right into the course. 

(Refer Slide Time: 00:50) 

 

So, before getting into programming we need to understand little bit about what 

computers are about. What you are seeing in this picture here is ENIAC the, so called 

first digital computer, which was built in the 1940s. And you can see how huge it is, it is 

almost like a house in size. It was massive compared to the modern personal computer 

standards. By no means ENIAC can be called the personal computer. It had 17000 

vacuum tubes, 5 million hand solder joints, it weighed quite a bit and it consumed 150 

kilo watts of power; no way this would be a personal computer. 



(Refer Slide Time: 01:31) 

 

However, June 2, 2000 what you are seeing on this picture is a micro photograph of 

Pentium 4 and it was designed in the year 2000 and deployed in the market, it could run 

at 1.5 gigahertz. That means, it can do 1.5 billion operations per second, it had 42 million 

transistors as opposed to this puny ENIAC. And it was build in this technology called 

0.18 micron technology, which means the transistors and the gates that were used to 

design as small as 0.18 micron. So, in the 40 or 50 years computers have moved quite far 

away from the first notion of digital computer. 

(Refer Slide Time: 02:15) 

 



In this picture you can see Google's data center. It is one of the data centers that they 

have across the world. And what you are seeing is racks and racks of machines, 

crunching data, running algorithms and running programs, various kinds of software that 

we use on a daily basis. And this is just one of the data centers and this requires 

enormous organization of the equipment, power systems, cooling systems and so forth. 

(Refer Slide Time: 02:49) 

 

But, all of this is basically a computing machine, all we see ENIAC, Pentium 4 all these 

data centers are all build of what are called computing machines and the basic 

abstraction is what we see here. We have a processor and we have memory and this is 

what makes any computer, you have processor and memory. You can think of the 

memory as a series of locations to store information. 

Let us say for example, we have 256 megabytes of RAM and you too would be laid out 

in some order and you can address them as location 0, location 1 so, on up to 256 

megabytes, just like how you houses would be numbered in a, if they were all lined up in 

a line and processor is the heart or the brain of the computing system. 



(Refer Slide Time: 03:43) 

 

So, typically memory is divided into two portions, there is some portion dedicated for 

programs and some portion dedicated for data. A program is essentially a sequence of 

instructions assembled to do some task. So, it could be again it could be a piece of 

software that you write for this course, it could be a search engine, it could be browser, it 

could be anything. And most of these instructions actually operate on data and the data is 

something that you store in the memory as well. 

There are instructions which could also control the flow of operations, it is not that all 

the programs have what is called a straight line sequence, they do task a, task b, task c 

and so on up to end. Based on the conditions that come through some branch operations 

could happen and because of which control could change. We wiill see these in more 

details later anyway. 



(Refer Slide Time: 04:43) 

 

But, the basic set up behind a processor is given in this picture here. We have an input 

system - the input system could be a key board, a mouse or any other device; you have 

an output system - this could be a monitor, some gears that are shifting, it depends on the 

computer that you are building. And most systems have a reasonable amount of memory, 

nowadays you probably have 2 gigabytes or 4 gigabytes of RAM on your desktops and 

laptops. 

And then there is this central processing unit. The central processing unit consists of two 

things: one is call the control unit, the other one is call the ALU or the Arithmetic and 

Logic Unit. Arithmetic and Logic unit is, it consists of various circuitry; it can do things 

like, additions, subtractions, comparisons and so on. And control unit in some sense is 

the over all master. So, it controls what happens in each of these units and how data gets 

processed in each of these units and when data moves in, when data moves out and so 

on. 



(Refer Slide Time: 05:49) 

 

So, let us look at the basic operations of a CPU. CPU can fetch an instruction from 

memory. It can execute the instruction based on whatever instruction is given to it. It can 

actually execute it. This could be addition, subtraction, multiplication, comparison, it 

could be anything. It can also store the result back in memory. So, when you write a 

program it is going to be translated into sequence of instructions. 

And a basic machine instruction would have this following setup. You have an operation, 

you have all the operands or the data on which the operation is going to be done. And 

where is the result going to be stored, also call the destination. A simple operation of 

could be this kind add a comma b, it adds the contents of memory locations a and b and 

it could be storing the result back in a itself. 



(Refer Slide Time: 06:41) 

 

So, sometimes you may somewhere down the line, you may learn a language called the 

assembly language. And we are seeing some small example here: an x86 Intel 32 

processor can execute the following binary instruction. So, you have 1011 four 0s 0 1 1 

four 0s and a 1, this is the binary code for moving 61 in hexadecimal to an internal 

memory called a register of the name al. So, al is a register which is an internal memory 

inside the CPU. 

So, the meaning of this instruction is move number 61 in hexadecimal to al. And this is 

something that you and I may not know, you and I may not even understand if you are 

just given the binary bits. However, for the CPU everything is translated into these bits, 

operating in these bite at this level is very, very hard for us humans. Therefore, we use, 

so called high level languages. But, sometimes you also have this intermediate language 

called the assembly language, which is human understandable, but at the same time it is 

more detailed. For example, we have MVI AL comma value. So, this could mean move 

the value to al and such instructions are called mnemonics. So, mnemonics are 

essentially easy to remember and this binary sequence, we could write them as MVI AL 

comma Val, this could be given to an assembler which would translate that in to this 

binary code. But, even operating at this assembly level is quite hard, this does not 

capture the kind of problems that we want to solve directly, they get too detail. 



(Refer Slide Time: 08:30) 

 

Instants we use, so call high level languages and a single high level statement could have 

more than one assembly instruction in it. So, let us take a small example, let say I want to 

add Z, Y and the result has to be stored in X. So, I would right this as X equals Y plus Z 

and it could recover the following sequence of operations. You may have to fetch Y from 

the memory, stored it in an internal memory location or a register called R1, you fetch Z 

also from the memory, you store it in another register called R2. And the ALU would 

then add R1 and R2 store the result back in R1 itself and it may require a move from R1 

to the memory location name x.  

So, a single operation X equals Y plus Z has resulted in four smaller operations and these 

operations could be written in assembly language if you would like to. However, this 

becomes too tedious. So, we would like to operate at a level which is much higher, then 

what the processor can understand and something that easier for the human beings to 

program with. And that is how the evolution of high level languages started. And in this 

course, we are going to learn one such high level language namely c. 



(Refer Slide Time: 09:55) 

 

Once you have a program written in high level, you need a set of tools to convert them 

into the machine level. And typically the programs that we write are called source code. 

They are called source because, that capture the intention of the programmer and a set of 

tools will convert the source code into machine code, you may have more than one such 

source program available. And you give this to a tool called a compiler, compiler is 

essentially a piece of software, which can convert this high level code into assembly 

code. 

And in turn an assembler can take this assembly code and generate machine code, at run 

time you have a linker and loader which will actually execute the program. Even if we 

don’t understand the details now, slowly and steadily we will build up an understanding 

towards all these ideas, we will also see software demonstrated along the way. So, as of 

now just remember that, you have a high level program which gets converted by a 

compiler into a assembly code. And assembly code downwards is taken care by 

assembler, linker and loader what we bother about is at the high level namely the high 

level language. 



(Refer Slide Time: 11:19) 

 

So, when we write programs, we are actually looking at solutions, we are trying to solve 

things. From the CPU perspective a program is nothing but, a sequence of instructions, 

you have instruction 1, 2, 3, 4, instruction 5 could be a condition based on whatever the 

result of instruction 5 is, you may execute instruction 6 for a instruction 10 and so on. 

However, this is not the way we think about solving a problem. For us a program is a 

solution to a problem and sometimes it is an frozen solution. By frozen what we mean is 

we have written the program, it is already compiled and it is ready to execute. And at this 

time, the solution is frozen, you cannot change the solution, unless you go and change 

the program and compile it once more. 

So, from the perspective of a human being a program is the representation of a solution 

devised by a human being. And the nice thing about program is that, it can be compiled 

and store and it is ready for execution from there on. You can also distribute the 

programs to others for them to read understand or even comment and change, you could 

distribute the machine version or machine code for others to execute, but, not be able to 

see the program. You can do lot of things and you write the program once, you can run 

the program as many times as you want. 



(Refer Slide Time: 12:43) 

 

Let us get into what programming is about, a program is essentially a piece of software 

that you write and programming; however, is problem solving. So, this is what we really 

want to do. So, in this course we will learn how to solve problems, but in the process we 

will also learn this language called c, with which we can take problems, break them 

down and write them using a program use tools to compile and run them, we will learn 

this whole cycle. 

So, any software development process starts with understanding the problem, you should 

first of all understand what the problem is, typically the problem is stated in English. So, 

that is called requirements analysis, from there you get a precise specification of the 

problem, usually mathematically specified and you device the solution. So, given a 

problem you go and device the solution or design the solution. And once you have the 

design for the problem, then you go and write it in the program, you could write it in any 

programming language, this is also called coding. And finally, once the coding is done 

we have to tested before we deploy it. So, we start with requirements analysis and get the 

specifications out, design a solution for the problem go and modulate and program it 

using a language compile it, run it and test it before it is ready for use. 

However, the most crucial part of this whole process is actually the solution design. So, 

you have to solve the problem and analyze the steps and ensure that this problem is 

captured properly and you have a solution, that is indeed correct, any ambiguity in the 



specification can result in program, that does not behave as expected. So, you have to be 

careful about understanding this specification. You should also understand the nuances 

of the programming language itself. So, that the intent is captured carefully and you use a 

programming language for that, finally you test it. 

(Refer Slide Time: 14:50) 

 

So, as I mentioned earlier we are going to use this language called C, C is a very old 

language it is been therefore, almost four decades now very widely used in industry even 

now. So, there are other languages like C plus plus and Java and so on. However, 

learning C well and understanding C thoroughly is basic requirement in the industry even 

now. C is a general purpose language, it is not for any specialized purpose, unlike a 

language like a HTML and so on. 

It is extremely effective and expressive, you will see this in a short while, it has a fairly 

compact syntax. The language is not too big, it has a rich set of operators, pretty much 

every arithmetic logic operation that you think about is already available as an operator 

and C also has an extensive collection of libraries. So, you do not have a really write 

every single thing down, you can call libraries, library functions whenever you need 

them and C comes with a rich set of libraries and that is one of the basic reasons why we 

pick c. 



(Refer Slide Time: 15:57) 

 

Let us look at a tiny C program. So, you may not understand it write away, but it is really 

tiny, it has only 6 line of code. The first line is actually comment, it is says a first 

program in C and the next line says hash include stdio dot h, there is this so called 

function by name main and there is exactly one statement inside this main. So, watch the 

mouse pointer to have a function called main and within the braces we have a single 

statement call printf and printf seems to be taking this hello world. 

So, this is been a custom for while now, almost every programming language book that 

you go to will teach you how to printf hello world. So, let us see are let us break down 

what this program is about, as I mentioned the first line is just a comment, is for us to 

understand it does not really result in anything that is executable. So, the program has it, 

but the machine code will not have these comments, it is not an instruction for the CPU 

to do anything, it just for us to understand. 

And let us look the next line, it is says hash include, it means include something which is 

already built. And I mention earlier that C has several library calls that you can make and 

stdio dot h is one such library with which you can do standard input and output. So, if I 

want type something on a keyboard and if I want see something on a screen, that is what 

you get from stdio dot h. 

Every C program will have something called a main function. And the very first 

instruction, that is executed will be from main and within this body of these curly braces, 



you have a single statement here call printf. You can see that, this printf is a function we 

will see what a function is a more detail later, it is seems to a taken argument or a 

parameter. So, it can say printf hello world and it will printf hello world on the screen. 

You can say print hello you are name will print hello and you are name on the screen and 

so on. But, every statement is terminated with the semicolon and the body of the function 

is usually within the braces. So, this is a fairly simple program, if we compile it and run 

it will print hello world on the screen. 

(Refer Slide Time: 18:38) 

 

So, with this we are at the end of module 1, in the next module we will see how… we 

will take up a small problem and we will see how to solve the problem and we will also 

see how to write it as a program. 


