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So, today we want look at different approach to problem solving and this approach is 

called constraint satisfactions or some people called it constraint processing. And we talk 

of constraint satisfaction problems and we call them CSP essentially. So, this constraint 

satisfaction approach to solving problems is unified way of representing problems as 

constraint satisfaction problems as we will see today. And then solving the CSP 

essentially so essentially what this says. So, for example, in state space search we talked 

about states end, moves end and going to new states and so on. And then we looked at 

solution space search and these method in constraint satisfaction problems everything is 

expressed in the following way. There is set of variables x, x one, x two, a finite set, a set 

of domains d which you will denote by d 1 d 2 and so on. And the meaning of this 

domain says that variable x 1 can take values from domain d 1 variable x 2 can take 

value from domain d 2 and so on. So, each variable has it is own domain it does not have 

to be the same set of values. 



So, one can be numbers another can be colors another can be day of the week; another 

can be name of the students; another can be the grade that the student has got anything in 

the variable. And each variable has a domain from the third thing is a set of constraints c 

which you will say c 1 c 2 let us say up to c k I will come to constraints in a moment first 

let us talk about variables. So, we will assume that there is final set of variables which is 

always the case so x n which means d n. And we will also assume far as for as we are 

concern that this domains are discrete domains essentially and not only discrete. But we 

will assume that they are finainic essentially which means that the set of values that 

available can take we will assume it is finite essentially. Because of the particular kind of 

sub problems that you want to look at and the solutions to those problems essentially 

now obviously many problems can be posed as variations of finite discrete domain. So, 

let us first discuss the constraint. 

So, each constraint c i is a pair S i and R i where S i is called scope of the constraint. And 

it is basically a subset of x which means that a constraint is defined over a subset of the 

variables and that subset that particular sub set was for the i t h constraint is called the 

scope of that constraint c i and R i. So, this subset let us say this sub set is made up of 

variables x i 1 x i 2 x i p. Let us say that there are p variables each of them has a 

corresponding domain and the relation R i is basically defined over those variables. So, it 

is a sub set of d i 1 cross d i 2 cross d i p that is the most generate way of defining a 

constraint satisfaction problems a set of variables a set of domains for each variable. And 

a set of constraint defined over subsets of variable. And we have just using the generic 

definition of a relation here simply saying that is the subset of the gross product of all the 

domains in practice this could be explicit or implicit. 

So, we will assume that the relations are explicit as for as we are concern for this 

discussion. So, for example, if you say that there is a number between 1 and 5 or the days 

of the week can be numbered from let say 1 to 7 when you will simply list this set as 1 

comma 2 comma 3 up to 7. We could have said it in some implicit way like greater than 

0 and less than 8. But we will not go into those things here and in many case it does not 

really matter. So, we will assume that the domain the relations are available to us as 

explicit pairs of tuples which is the subset of this cross product of the domains. Now, you 

will you must have for example, solved set of linear equation they can also be seen as a 



constraint satisfaction problems except that the domains may be continues in linear 

programming. Whereas, domains are discrete in integer programming and they have their 

own so specialized kind of constraint satisfaction problems have their own methods for 

solving them essentially  

So, for example, you know how to solve set of linear e Q inequalities or a set of linear 

equations. We will not going to specialize methods they eve those specialized methods 

obviously more efficient than the general methods that we want to look at that. We want 

to explode is that for general kind of constraint satisfaction problems. And we will be 

interested in those problems where the relations are explicit and the domains are finite 

and discrete. We will called this a finite constraint satisfaction problems and we want to 

look at ways of solving those problems what is the solution a solution to a CSP. So, we 

often say that a CSP is denoted often by R as this triple x d and c. An very often we use 

the term constraint network it is the standard term which the community uses. So, we 

will also stick to that but when you say as a CSP or constraint network basically mean 

the same thing this is triple of set of variables set of domains for the variables. And 

constraints was this variables solution to a CSP is an assignment to each variable 

obviously from their domains such that each constraint is satisfied. 

So, they will define what we mean by constraint in a moment essentially. But that is a 

general idea of a constraint satisfaction problem again to repeat we have a set of 

variables we have set of domains for 1 domain for each variable from which can take 

values. And we have a set of constraints defined over a subset of those variables without 

loss of generality will assume that for each possible scope there is only 1 constraint 

define. So, for example, if I take variable x 1 and x 2 i define only 1 constraint on that I 

will not define 2 separate constraints, because you can always combine the 2 constraints 

into 1. So, we are assume that there is 1 and the solution to CSP is an assignment to each 

variable such that each constraint is satisfied essentially. Now, this is very generate way 

of looking a things but it is very useful, because it turns out that a lot of problems can be 

as constraint satisfaction problems. 

And we can now subscribe to this strategy of saying that if you solving a new problem 

just as a CSP then takes an of the self CSP solver and use it to solve the CSP essentially. 



So, we can capitalize upon the expertise of people who have worked on constraint 

satisfaction problems and use their solutions directly. So, only thing when you need to do 

is so to pose it has a CSP and he turns out many, many problems can be pose as finite 

discrete C S P’s for which we can use the methods that have discussed in the committee. 

We will not have time to discuss those methods again as I said this is just giving you an 

exposure to this particular field and for those of you who are interested you should come 

to the planning and constraint satisfaction course like semester in which you been look at 

all the defined methods which we will not have time to discuss here. 

So, as in a side you should also observe that is the problem is a special case of a CSP and 

what is what kind of CSP it is? It is the CSP in which the domains each domain has 2 

values 0 or 1 or true or false or whatever. And the constraints are defined in terms of the 

logical operators that we talk about and or and not and so on. And if you have such a 

problem where you have this then you have a sat problem essentially. So, the sat problem 

is special kind of a CSP and again of course sat has its own specialize approaches to 

solving them. So, there are approaches to sat and all kinds of things. So, again we will 

not going to the special ways of solving things essentially but we just observe that that is 

also a CSP. 
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Now, our favorite problem one of our favorite problem small problems is this n queen 

problems. So, if you look at this problem let say we are looking 4 queen and how can we 

represent this? We can say that there are 4 variables let say x 1 one for this column x 2 

for this column x 3 for this column x 4 for this column. And let us say the values the that 

can take a ne 2 3 4 4 numbers then we can express this as a CSP there equine problems 

by specifying the constraint So, I will use the short form R 1 2 to stand for constraint 

number 1 which has the scope of variables x 1 and x 2. So, will uses directly in a relation 

here so it sort of clear between us. Then we are talking about a constraint which is over 

the first 2 variables what us those constraints we can simply specify it as saying that 

these pairs are allowed. So, for example, you have placed the queen on first row the first 

queen on the first row second queen I can only place on the third row. 

So, 1 comma 3 is allowed or 1 comma 4 is allowed or 2 comma 4 is allowed or 3 comma 

1 is allowed or 4 comma 1 and 4 comma 2. So, this is what I meant by saying that we 

have it available to us explicitly it does not have to be implemented like this. As far as it 

is only for our discussion that we are assuming that this constraint between the first 

queen and the second queen i e expressed available to us as a pair of values that is 2 

variables can take. So, each variable can take 4 on of this 4 values the domains are all the 

same and this constraint is expressed like this likewise you will have to express R 2 3 R 

1 3 R 1 4 R 2 4 and R 3 4. So, there are 6 constraints, because you can choose 2 variables 

in 6 place and all those 6 which I am leave as a small exercise for you is to be can be 

expressed as a solution essentially. And then of course the problem is to find the set of 

values for this variables such that the values satisfy all this constrain which means if I 

taken a value for variable 1 and some value for variable 2 let us call it i and j. Then that 

pair i j must occur in set of topples here then that essentially. 
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So, we have some definitions we say that a constraint or we say that assignment. We will 

use a bar as an assignment which will be a short form for a set of so a over scope s. So, 

basically this means that this scope as says on which variables this assignment is done 

and this assignment selects 1 value for each variable from their respective domain 

essentially. So, explicitly I would say something like ah x 1 is equal to some value a then 

x 2 is equal to some value b and so on. But implicitly we will just assume that we will as 

a vector of a b and so on. And we assume that somehow we are able to specify what the 

variables are essentially it does not really matter the only important thing is that 

assignment is over a scope S. The scope S basically says that these are the variables to be 

giving value essentially. So, an assignment a a over a scope S satisfies a constraint ci if 

the following wholes that the scope of this constrain which you will call S i is a subset of 

this scope S which means every variable in the constraint has a value and we will use the 

term pie to talk of a projection. 

So, I am sure you are familiar with a notion of a projection here of a bar over this set S i. 

So, why by this we mean that from this assignment a which is over some set of variables 

which you called S select only those values which correspond to those variables which 

belong to S i. And this is projection of a bar onto the subset of variable is a subset of R i 

so an assignment satisfies. So, if I given assignment here for example, i put a queen here 



and i put the queen let say here and i put queen here So, this assignment says a is equal to 

1 for the first queen 4 for the second queen and 2 for the third queen that is an a bar for 

this particular assignment and I can say that this assignment a satisfies the solution R 1 2 

why because if I take the projection of the of the these variables on the first and the 

second variable which is 1 and 4 I can find that 1 4 of course in my relation R. 

So, it satisfy the relation R then we say that an assignment a bar is consistent. If it 

satisfies all constraints in its scope I will not expand upon this. Basically we are saying 

this a bar has a scope S and for whichever constraint that scope of that constraint is a 

subset of S. It must satisfy that constraints which means projection over those variables 

must be belong to that particular triples essentially. So, you can see that this particular 

assignment which I have here where first queen is here the fourth queen second queen is 

here and the third queen is here is consistent. So, I have not written those constraints, but 

you can see that between 1 and 2. It is satisfying the expected constraints what is the 

constraints that the queen must know the attack another queen which here express 

explicitly here you could have express. It has a relation which says x if that is the array 

then xi not equal to y i or something like that essentially if x 1 xi why location of the 

queen that they are not on the diagonal. They are not on the same row they are not on the 

same column you could have express it something like that essentially but we have 

expressed explicit here. 

So, we can see that the first 2 queens are not attacking each other .So, they and be that 

shown by this the second and the third also not attacking. So, if you are written R 2 3 you 

could have seen that and the first and the third also not attacking and they would have 

been present in this essentially. So, we say that this assignment a bar is consistent 

essentially sometime you use the term partial assignment which means that if an 

assignment only 2 a subset of the variables. But we will use the time term 

interchangeably or a partial solution some time we say. So, an assignment is consistent if 

it satisfies all the constraints which call within the scope in this case there are 3 

constraints between queen 1, queen 2, queen 1, queen 3 and queen 2, queen 3 and all the 

3 are satisfied. So, this assignment is consistent now observe that just because it is 

consistent it does not mean it can be a part of a solution. Because you can you surely 

know that this cannot be extended to a complete solution essentially you cannot put a 



value and you this thing you put it here it will attack these 2. If you put it here it will 

attack these 2 if you put it here it will attack this if you put here it will attack these 2. So, 

you cannot place a variable. 

So, this a consistent partial solution but it is not a consistent full solution. A full solution 

is a consistent assignment to all the variables which is another way of saying that what 

you are said here that a CSP solution to a CSP assignment to each variable which 

satisfies all the constrain essentially which is the same thing that is saying that if you 

assign all the variables and it is consistent it is a solution essentially. So, how do we 

solve? So, again we want to look at general purpose methods of solving CS P's just like 

with it for state space or we did not care what the state was and where the moves end 

came from as long as we had move zen function and as long as we had a goal test 

function. We said we will use the search algorithm that are used likewise we have just 

made an observation that many problems can be posed as C S P’s I have mentioned 

sometime during planning. That planning can be posed as a CSP which we will not have 

time to going here but it can be planning can be also posed as sat which is the special 

case of C S P. 

Both are slightly different formulation and we will look at in due course couple of more 

problems which can be posed as CSP but we want to look at general purpose ways of 

solvency C S P’s essentially. So, let me discuss 1 more problem before we go just to to 

highlight what are the issues involved. So, let say we are doing this map coloring map 

coloring can also be posed as CSP before we come to map coloring we are not said 

anything about the scopes of this constraints essentially do we have any constraints on 

the scope of this constraints. I have posed this problem where the scope was 2 variables 

between queen 1 queen 2 or queen 1 queen 3 or between queen 1 and queen 4 and so on 

and so forth why not between 3 variables between 4 variables in this. You can express 

constraints and in more variables for example, if I had express the constraints as a 

constraint of 4 variables I would actually be expressing the solution itself, because I 

would have just basically the set of solutions in that essentially. So, in fact, this kind of 

illustrates the idea that we pursue in constraint satisfaction problems that you do not have 

to specify the problem completely as long as you give some specification of the set of 

constraints it is a task of the solver to elicit a solution out of that essentially. 



So, what is the solution to this? You know that solution to the CSP there in fact only 2 

solution 1 is 3 1 2 4 and the other is 2 3 1 4 2 3 1 4 2. And the other 1 is if I start with 2 

and 4 1 and 3 I have only these 3 now this particular relation is a relation on the set of 4 

variables this is called a solution relation where R refers to this constraint satisfaction 

problem. So, correspondent to a constraint satisfaction problem there is a solution 

relation and it is task of the solver to elicit the this solution from the CSP I have only 

specify binary constraints here between 2 variables. And the solver will eventually tell 

me the these are the 2 possible solutions it may not express in this form but it gave me an 

assignment of all possible variables and we will do that. So, without again loss of 

generality we will assume that we are working with binary relations. 

A binary C S P’s and a binary C S P’s we mean that C S P’s which have scopes of size 

either 1 or 2 essentially scope of size 1 basically says that I am defining subset of domain 

scope of size to subset of the cross product of 2 domains. So, binary CSP has scopes 1 or 

2 and such a CSP is called binary CSP and it has been shown that any higher order CSP 

can be converted to a binary CSP by adding more variable essentially. So, I will leave 

this as a small thought exercise for you to work on how can I converted into how can I 

convert this. For example, into a binary CSP if this was my original CSP which is the 

solution itself how can converted into a binary CSP. So, we will stick to binary C S P’s 

because we know the there is a whole lot of methods which obtain those problems and 

other problems can be express as a binary C S P's. So, this map coloring problem is 

naturally pose as a binary CSP ao. 
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Let say I have 3 countries will not name them and let us say my formulation of C S P’s 

that I have a relation between this, this, and this. So, let us just called this x 1 x 2 and x 3 

and let us say they have the same domains which is let say just 2 colors are allowed red 

and blue. So, I think that I think the domains inside this circles and the relation is not 

equal to now we can see that this problem has 2 solutions. You can color these 2 red and 

this 1 blue or you can color these 2 blue and this 1 red essentially which means implicitly 

there is a constraint between these 2 variables. But that constraint is not explicit it has not 

been mentioned in the CSP the CSP only says that I have a constrain between x 1 and x 2 

and between x 1 and x 3. I do not say anything about x 2 and x 3 but eventually off 

course, this can be again elicit ate through a process of solving the constraint. And we 

will try and see whether we get some insight into how we acquire new relations in the in 

some manner essentially. So, how so let us look at these 2 problems. So, we have now 

you know in those case 4 variables in this case 3 variables and we have some domains 

and so on. How can we solve a C S P? 

The simplest approach you can go back to state space search. You try you sign a value 

for the first variable; you have sign a value for the second variable; you assign a value 

for third variable assign a value for fourth variable and so on. Finish an assignment in 

state space search we would have finish the assignment and then check whether it is goal 



state or not in constraint satisfaction problems. We can backtrack earlier why because the 

moment you know that some constraint is not being satisfied or some we have defined 

the lotion of consistent assignment or consistent partial solution. The moment we know 

that the assignment is not consistent we can backtrack from their essentially. So, you do 

not have to assign values to all variables. So, in other words you do not have to assign 

values to all variables. So, in other words you do not have to as in this case of course you 

will backtrack only when you see the fourth when you try to put the fourth queen. But if 

you let us try a 6 queen problem, you will see that there is some kind of processing you 

can do when you can back track only or you might be able to backtrack only. 
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So, the simplest algorithm for solving a CSP is called backtracking it is a official name 

of name of this algorithm essentially. So, everybody uses this term essentially. So, what 

do we have? We have constraint satisfaction problems given x given d and given c 

essentially. So, let us this outline this algorithm So, 1 issue that keep in mind is that let 

say you have assigned some value to x 2 and then you are trying for values of e c. And 

let say you assigned the third value to x 2 let us say in a set of domain you are trying the 

third value 2 x 2. Then you go forward to x 3 and you find that there is no values to x 3 

and you need to back track to the fourth value of x 2 and then try all values of x 3 again. 

So, the fact that you every time you go back and forth you have to keep track of what 



values left for you to try this algorithm does takes a very approach it makes a copy of the 

domain every time. 

So, it start up by saying i gets the value 1 di is a copy of di in this case d 1 and while i is 

in this range n it does the following it calls off function call select value. So, let say x 

gets a value from a function called select value I should also initialize a equal to empty 

initially I do not have a value for the partial solution given a select value for this x i x i d 

i c. So, what this select value function will do is it will give me the next value for xi from 

its domain d i; d i prime actually with this consistent by this you mean it is consistent 

with all the previous variables that have been given values. So, if xi is equal to 4 let us 

say then if there is a constraint between 1 3 and 4. Then this value for the first variable 

must be consistent with those first and third value since essentially the way that you have 

just defined there essentially. So, it will written 2 things it will either it something called 

null which means it cannot find a value then we say i goes to i minus 1 D i prime hence i 

goes to i plus 1 you have got some value for x 1. You got some value for x 2 you got 

some value for x 3 or let me try and draw more elaborate diagram let say x 1 has theses 

values x 2 has or d 1. 

So, let us say you are looking at x 4 now and let say you have always progressing from 

let say your select value function always fix the value from left to right, because they are 

in some list and it has selected this value for d 1 and this value for d 2 and this value for 

d 3. And now we are trying to find if any of these values for d 4 is consistent with this 

assignment we have here essentially. So their 2 thing that can happen either it can it will 

say that no nothing is possible here which means I was go and look for a new value for d 

3 here, because we are tried this. So, we are doing simple that first search over this 3 of 

possibilities where you start with the first 1 here then the first 1 here then the first 1 here 

and then keep back trap. If you cannot find a variable value here you must go back to this 

1 and try the next value for this essentially which means you must set i is equal to i 

minus 1. So, I do not need to change this right. 

So, let see what select value is going to do essentially what it will do? So, let say you are 

looking at xi from di and c it will say let us say a gets head of di if it is a list it takes a 

first value and it says di di before that it must have check which says that if di is equal to 



empty then return null. So, if any point di becomes empty it must return null otherwise it 

it should go into the this loops looking for consistent value if a i if a sorry let us call this 

a a i if a comma a i. It means the whole solution that has been constructed so far which 

we will as a. So, this 3 values in this examples plus this fourth value that we are we are 

just picked from its domain we put them all together and that is a new partial solution if 

this is consistent then return a i. Well I called it x here you could have called it x it does 

not matter. So, it is in a loop inside taking out values from the domain taking out and 

showing them to speak essentially. So, when it was doing d 3 that d 3 prime had thrown 

away these two values from the domain. 

So, they were not there in d 3 prime anymore. So, when it backtrack it must try the next 

value essentially then it must try the next value then the next value. And if you cannot 

find there is must backtrack that is the standard. Therefore search chronological 

backtracking that we have been talking about this other form of backtracking that we had 

mentioned dependency directed backtracking was actually invented for solving for 

improving this algorithm backtrackings. So, that instead of if you cannot find a value for 

d 4 just to give an example that let say only constraint that d 4 participate it is in let us 

call it R 1 2 4 which means this variables 1 and 2 and 4 essentially or if you want to work 

with binary constraints and let us say R 1 4 and R 2 4. So, let say the only constraints d 4 

participates as in with variable 1 and variable 2 with variable 2 then if you cannot find 

the value for d 4. What is the point of looking for new value for d 3? Because d 3 

anyway not influencing the consistency of the choice of d 4 essentially the only thing 

that d 4 is getting influences by this relation R 1 4 or by R 2 4. 

And the fact that you cannot find value for d 4 means that one of this relations you 

cannot satisfy which means actually you should really jump back here. But of course we 

will not get into that here, because it needs a little bit more formulization. So, that is the 

general idea of dependency directed backtracking that if you can keep track of which 

constraint is being evaluated. Then you can jump back to one of the variables in that 

constraint in this case they have binary here essentially. But in our example we just to i is 

equal to i minus 1 which is like doing chronological backtracking if you cannot find a 

value for d 4 try a new value for d 3 and so on essentially. So, that is a i mean I have 

written may be it is not quite correct something is missing here. But you can work that 



out work out the details, but the basic idea is to go down this set of choices looking for a 

new value for the is variable. If you cannot find it if you can find it go to the next 

variable which is what we have doing here i is equal to i plus 1 di copied the domain and 

solution that we have made and then keep going forward in that session if you cannot 

find it backtrack. So, it is simple depth first search being done over this structure of the 

now this algorithm is actually the simplest the starting point for constraint satisfaction 

problem algorithms. 

The other algorithm which improve upon that do the following is that for example, some 

algorithms when they are doing select value though look head to see whether or given 

choice will in future conflicts with some vary variable essentially. So, that is one kind of 

you know improvement which is called look ahead algorithm then we have this kind of 

intelligent backtracking algorithm. So, dependency directed backtracking algorithm that 

we are talking about essentially and there are some other things that we will discuss. So, 

that you get a flavor of that essentially, but this by and large is a the simple algorithm. 

Now observe that backtracking happens the moment of partial solution is what is a 

partial solution we are talking about here it is a value for a 1 for a 2 and up to a i minus 

1. And we cannot find we cannot extend this to a i or the is value for the is variable or 2 

x i. Let say we cannot find a value for this is variable and we backtrack at this point itself 

we do not go further to see you know, because at this point as you can see no by 

definition not right no a solution is a consistent assignment to all the variables. Or in 

other words a solution is an assignment to all the variables. 

So, that every constraint is satisfied and a partial solution or a or a partial assignment is 

consistent. If it satisfies all the constrain for whom values have been selected or who's 

scope fall within this essentially here. So, we say that constraint ci assignment a bar 

satisfies ci if the scope of the ci is has a value which means it is already in the 

assignment. And the projection of this assignment over this scope of S i is a subset of 

this which means it which actually I should say belongs to this belongs word here belong 

to this and in. So, that is only for with respect to 1 constraint ci and assignment is 

consistent if it is satisfies the all the constrain with satisfy this property which means to 

scope are contained in this and who's projection is contained in that correspondent 

essentially. So, it can only be that it can never be the case that a that assignment which is 



a partial solution which is not consistent can never consistency. So, when I was talking 

about beginning on CSP one of the thing. So, I had said was that CSP is very interesting 

because it allows you to combine search with reasoning now that reasoning part web 

have not seemed. Let me just give you a motivation for that and then in the next class, 

we will see how that is done. So, one of the another problem which is pose as a CSP you 

know if you solving a crossword puzzle. Or if you are solving sudoku or something you 

do a lot of reasoning in fact you are supposed to do more reasoning than search. 
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So, they these problems are similar they are called some of you must have looked at such 

problem and if you just search on the web you will find examples. So, for example, you 

might say send plus more. So, these are sort of arithmetic problems in which we the 

digits have not been revealed, but they have been replaced by letters and your task is to 

find out what digit does each letter stand for. So, we assume that each assignment is 

distinct that that 1 letter stands for exactly 1 digit and so on. So, how would you solve 

such a problem essentially? So, if you want solve this or let me take another example. 

So, here is a another example. So, this plus this should give you apple essentially. So, if 

you wanted to solve something like this then what you would do is you would create a 

variable for each a place for each letter of course the number of variables are number of 

distinct letters in this problem, but you want to find vales for them. So, these boxes that 



an creating are boxes for values this a plus and obviously you must create some more 

boxes which are for carry over. 

So, 4 boxes for carry over and you can define the domains of so these variables so the 

domain of this is 0 slash 1, because we adding 2 numbers we can never have carry over 

moves and 1 and the domains of these are 0 to 9 essentially. So, the kind of reasoning 

that Sangeetha was talking about we can do here essentially. So, for example, you can 

observe that this must be 1, because you can never be get a value of more than 1 which 

means this carry over must of course we are not interested on this. But never the less the 

what the moment we have said this a a equal to 1 we know that this is equal to 1 and this 

equal to 1. We can fill in the value there t is 9, why t 9? And it must be distinct this a p 

and t are distinct they cannot stand for same digit. So, which means this p cannot be 1 

and in any case p cannot be 1 So, if t is nine then what is p is 0 this must be 1 we have 0 

here also know and we have nine for t here we have nine here nine here So, this must be 

eight this must be 1 So, we know this must be 3. 

So this is 0, now, we need to fill in this is 8. So, this leaves only 2 for this. So, we have 

off course, solved in this problem now, and we are solved it through a process of 

reasoning certain some rezoning with it you know this can only be 1 and know this kind 

of stuff. Now, if you off course, were not should I say smart enough to do this kind of 

reasoning you could still have try this algorithm backtracking here you could have said 

try a value for a try a value for b and so on and so forth. Off course, we have to express 

the constraint, how do we express the constraints that this plus this must be either this 

must be either equal to this plus this or this plus this this plus carry over 1 and modulo 

10. So, we have to express that carefully essentially, but the point is that we a try to make 

here is that solving constraint satisfaction problems not necessarily have to be done 

through a search method like backtracking. They can be done through other processes 

like reasoning in some way now can this reasoning be done in general purposely 

essentially. 

Of course, here we are exploding the rules of arithmetic and it turns out that yes indeed 

you can do a certain amount of. So, this process is called constraint propagation. So, we 

are saying that if this is 1 this must be 0; this is 0; this must be 9 and this must we are 



propagating the constraint. So, what are we doing here basically reducing the domains of 

the variable we have reduce this from 0 to 9 to just 1 value 1 and just to 0 and so on so 

forth. And the moment we reduce the value of some domain some variable we can 

propagate a reduction to another domain. This idea of propagation is of course very 

common in reasoning. And we will see in the next class little bit about how this can be 

generalized. And we will look at another interesting problem that propagation demands 

that quite effectively. So, we will stop here with this. 


