
Artificial Intelligence

Prof. Deepak Khemani

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture - 39

Constraint Satisfaction Problems

 (Refer Slide Time: 00:21)

So, today we want look at different approach to problem solving and this approach is

called constraint satisfactions or some people called it constraint processing. And we talk

of constraint satisfaction problems and we call them CSP essentially. So, this constraint

satisfaction approach to solving problems is unified way of representing problems as

constraint satisfaction problems as we will see today. And then solving the CSP

essentially so essentially what this says. So, for example, in state space search we talked

about states end, moves end and going to new states and so on. And then we looked at

solution space search and these method in constraint satisfaction problems everything is

expressed in the following way. There is set of variables x, x one, x two, a finite set, a set

of domains d which you will denote by d 1 d 2 and so on. And the meaning of this

domain says that variable x 1 can take values from domain d 1 variable x 2 can take

value from domain d 2 and so on. So, each variable has it is own domain it does not have

to be the same set of values.

So, one can be numbers another can be colors another can be day of the week; another

can be name of the students; another can be the grade that the student has got anything in

the variable. And each variable has a domain from the third thing is a set of constraints c

which you will say c 1 c 2 let us say up to c k I will come to constraints in a moment first

let us talk about variables. So, we will assume that there is final set of variables which is

always the case so x n which means d n. And we will also assume far as for as we are

concern that this domains are discrete domains essentially and not only discrete. But we

will assume that they are finainic essentially which means that the set of values that

available can take we will assume it is finite essentially. Because of the particular kind of

sub problems that you want to look at and the solutions to those problems essentially

now obviously many problems can be posed as variations of finite discrete domain. So,

let us first discuss the constraint.

So, each constraint c i is a pair S i and R i where S i is called scope of the constraint. And

it is basically a subset of x which means that a constraint is defined over a subset of the

variables and that subset that particular sub set was for the i t h constraint is called the

scope of that constraint c i and R i. So, this subset let us say this sub set is made up of

variables x i 1 x i 2 x i p. Let us say that there are p variables each of them has a

corresponding domain and the relation R i is basically defined over those variables. So, it

is a sub set of d i 1 cross d i 2 cross d i p that is the most generate way of defining a

constraint satisfaction problems a set of variables a set of domains for each variable. And

a set of constraint defined over subsets of variable. And we have just using the generic

definition of a relation here simply saying that is the subset of the gross product of all the

domains in practice this could be explicit or implicit.

So, we will assume that the relations are explicit as for as we are concern for this

discussion. So, for example, if you say that there is a number between 1 and 5 or the days

of the week can be numbered from let say 1 to 7 when you will simply list this set as 1

comma 2 comma 3 up to 7. We could have said it in some implicit way like greater than

0 and less than 8. But we will not go into those things here and in many case it does not

really matter. So, we will assume that the domain the relations are available to us as

explicit pairs of tuples which is the subset of this cross product of the domains. Now, you

will you must have for example, solved set of linear equation they can also be seen as a

constraint satisfaction problems except that the domains may be continues in linear

programming. Whereas, domains are discrete in integer programming and they have their

own so specialized kind of constraint satisfaction problems have their own methods for

solving them essentially

So, for example, you know how to solve set of linear e Q inequalities or a set of linear

equations. We will not going to specialize methods they eve those specialized methods

obviously more efficient than the general methods that we want to look at that. We want

to explode is that for general kind of constraint satisfaction problems. And we will be

interested in those problems where the relations are explicit and the domains are finite

and discrete. We will called this a finite constraint satisfaction problems and we want to

look at ways of solving those problems what is the solution a solution to a CSP. So, we

often say that a CSP is denoted often by R as this triple x d and c. An very often we use

the term constraint network it is the standard term which the community uses. So, we

will also stick to that but when you say as a CSP or constraint network basically mean

the same thing this is triple of set of variables set of domains for the variables. And

constraints was this variables solution to a CSP is an assignment to each variable

obviously from their domains such that each constraint is satisfied.

So, they will define what we mean by constraint in a moment essentially. But that is a

general idea of a constraint satisfaction problem again to repeat we have a set of

variables we have set of domains for 1 domain for each variable from which can take

values. And we have a set of constraints defined over a subset of those variables without

loss of generality will assume that for each possible scope there is only 1 constraint

define. So, for example, if I take variable x 1 and x 2 i define only 1 constraint on that I

will not define 2 separate constraints, because you can always combine the 2 constraints

into 1. So, we are assume that there is 1 and the solution to CSP is an assignment to each

variable such that each constraint is satisfied essentially. Now, this is very generate way

of looking a things but it is very useful, because it turns out that a lot of problems can be

as constraint satisfaction problems.

And we can now subscribe to this strategy of saying that if you solving a new problem

just as a CSP then takes an of the self CSP solver and use it to solve the CSP essentially.

So, we can capitalize upon the expertise of people who have worked on constraint

satisfaction problems and use their solutions directly. So, only thing when you need to do

is so to pose it has a CSP and he turns out many, many problems can be pose as finite

discrete C S P’s for which we can use the methods that have discussed in the committee.

We will not have time to discuss those methods again as I said this is just giving you an

exposure to this particular field and for those of you who are interested you should come

to the planning and constraint satisfaction course like semester in which you been look at

all the defined methods which we will not have time to discuss here.

So, as in a side you should also observe that is the problem is a special case of a CSP and

what is what kind of CSP it is? It is the CSP in which the domains each domain has 2

values 0 or 1 or true or false or whatever. And the constraints are defined in terms of the

logical operators that we talk about and or and not and so on. And if you have such a

problem where you have this then you have a sat problem essentially. So, the sat problem

is special kind of a CSP and again of course sat has its own specialize approaches to

solving them. So, there are approaches to sat and all kinds of things. So, again we will

not going to the special ways of solving things essentially but we just observe that that is

also a CSP.

(Refer Slide Time: 11:51)

Now, our favorite problem one of our favorite problem small problems is this n queen

problems. So, if you look at this problem let say we are looking 4 queen and how can we

represent this? We can say that there are 4 variables let say x 1 one for this column x 2

for this column x 3 for this column x 4 for this column. And let us say the values the that

can take a ne 2 3 4 4 numbers then we can express this as a CSP there equine problems

by specifying the constraint So, I will use the short form R 1 2 to stand for constraint

number 1 which has the scope of variables x 1 and x 2. So, will uses directly in a relation

here so it sort of clear between us. Then we are talking about a constraint which is over

the first 2 variables what us those constraints we can simply specify it as saying that

these pairs are allowed. So, for example, you have placed the queen on first row the first

queen on the first row second queen I can only place on the third row.

So, 1 comma 3 is allowed or 1 comma 4 is allowed or 2 comma 4 is allowed or 3 comma

1 is allowed or 4 comma 1 and 4 comma 2. So, this is what I meant by saying that we

have it available to us explicitly it does not have to be implemented like this. As far as it

is only for our discussion that we are assuming that this constraint between the first

queen and the second queen i e expressed available to us as a pair of values that is 2

variables can take. So, each variable can take 4 on of this 4 values the domains are all the

same and this constraint is expressed like this likewise you will have to express R 2 3 R

1 3 R 1 4 R 2 4 and R 3 4. So, there are 6 constraints, because you can choose 2 variables

in 6 place and all those 6 which I am leave as a small exercise for you is to be can be

expressed as a solution essentially. And then of course the problem is to find the set of

values for this variables such that the values satisfy all this constrain which means if I

taken a value for variable 1 and some value for variable 2 let us call it i and j. Then that

pair i j must occur in set of topples here then that essentially.

(Refer Slide Time: 14:42)

So, we have some definitions we say that a constraint or we say that assignment. We will

use a bar as an assignment which will be a short form for a set of so a over scope s. So,

basically this means that this scope as says on which variables this assignment is done

and this assignment selects 1 value for each variable from their respective domain

essentially. So, explicitly I would say something like ah x 1 is equal to some value a then

x 2 is equal to some value b and so on. But implicitly we will just assume that we will as

a vector of a b and so on. And we assume that somehow we are able to specify what the

variables are essentially it does not really matter the only important thing is that

assignment is over a scope S. The scope S basically says that these are the variables to be

giving value essentially. So, an assignment a a over a scope S satisfies a constraint ci if

the following wholes that the scope of this constrain which you will call S i is a subset of

this scope S which means every variable in the constraint has a value and we will use the

term pie to talk of a projection.

So, I am sure you are familiar with a notion of a projection here of a bar over this set S i.

So, why by this we mean that from this assignment a which is over some set of variables

which you called S select only those values which correspond to those variables which

belong to S i. And this is projection of a bar onto the subset of variable is a subset of R i

so an assignment satisfies. So, if I given assignment here for example, i put a queen here

and i put the queen let say here and i put queen here So, this assignment says a is equal to

1 for the first queen 4 for the second queen and 2 for the third queen that is an a bar for

this particular assignment and I can say that this assignment a satisfies the solution R 1 2

why because if I take the projection of the of the these variables on the first and the

second variable which is 1 and 4 I can find that 1 4 of course in my relation R.

So, it satisfy the relation R then we say that an assignment a bar is consistent. If it

satisfies all constraints in its scope I will not expand upon this. Basically we are saying

this a bar has a scope S and for whichever constraint that scope of that constraint is a

subset of S. It must satisfy that constraints which means projection over those variables

must be belong to that particular triples essentially. So, you can see that this particular

assignment which I have here where first queen is here the fourth queen second queen is

here and the third queen is here is consistent. So, I have not written those constraints, but

you can see that between 1 and 2. It is satisfying the expected constraints what is the

constraints that the queen must know the attack another queen which here express

explicitly here you could have express. It has a relation which says x if that is the array

then xi not equal to y i or something like that essentially if x 1 xi why location of the

queen that they are not on the diagonal. They are not on the same row they are not on the

same column you could have express it something like that essentially but we have

expressed explicit here.

So, we can see that the first 2 queens are not attacking each other .So, they and be that

shown by this the second and the third also not attacking. So, if you are written R 2 3 you

could have seen that and the first and the third also not attacking and they would have

been present in this essentially. So, we say that this assignment a bar is consistent

essentially sometime you use the term partial assignment which means that if an

assignment only 2 a subset of the variables. But we will use the time term

interchangeably or a partial solution some time we say. So, an assignment is consistent if

it satisfies all the constraints which call within the scope in this case there are 3

constraints between queen 1, queen 2, queen 1, queen 3 and queen 2, queen 3 and all the

3 are satisfied. So, this assignment is consistent now observe that just because it is

consistent it does not mean it can be a part of a solution. Because you can you surely

know that this cannot be extended to a complete solution essentially you cannot put a

value and you this thing you put it here it will attack these 2. If you put it here it will

attack these 2 if you put it here it will attack this if you put here it will attack these 2. So,

you cannot place a variable.

So, this a consistent partial solution but it is not a consistent full solution. A full solution

is a consistent assignment to all the variables which is another way of saying that what

you are said here that a CSP solution to a CSP assignment to each variable which

satisfies all the constrain essentially which is the same thing that is saying that if you

assign all the variables and it is consistent it is a solution essentially. So, how do we

solve? So, again we want to look at general purpose methods of solving CS P's just like

with it for state space or we did not care what the state was and where the moves end

came from as long as we had move zen function and as long as we had a goal test

function. We said we will use the search algorithm that are used likewise we have just

made an observation that many problems can be posed as C S P’s I have mentioned

sometime during planning. That planning can be posed as a CSP which we will not have

time to going here but it can be planning can be also posed as sat which is the special

case of C S P.

Both are slightly different formulation and we will look at in due course couple of more

problems which can be posed as CSP but we want to look at general purpose ways of

solvency C S P’s essentially. So, let me discuss 1 more problem before we go just to to

highlight what are the issues involved. So, let say we are doing this map coloring map

coloring can also be posed as CSP before we come to map coloring we are not said

anything about the scopes of this constraints essentially do we have any constraints on

the scope of this constraints. I have posed this problem where the scope was 2 variables

between queen 1 queen 2 or queen 1 queen 3 or between queen 1 and queen 4 and so on

and so forth why not between 3 variables between 4 variables in this. You can express

constraints and in more variables for example, if I had express the constraints as a

constraint of 4 variables I would actually be expressing the solution itself, because I

would have just basically the set of solutions in that essentially. So, in fact, this kind of

illustrates the idea that we pursue in constraint satisfaction problems that you do not have

to specify the problem completely as long as you give some specification of the set of

constraints it is a task of the solver to elicit a solution out of that essentially.

So, what is the solution to this? You know that solution to the CSP there in fact only 2

solution 1 is 3 1 2 4 and the other is 2 3 1 4 2 3 1 4 2. And the other 1 is if I start with 2

and 4 1 and 3 I have only these 3 now this particular relation is a relation on the set of 4

variables this is called a solution relation where R refers to this constraint satisfaction

problem. So, correspondent to a constraint satisfaction problem there is a solution

relation and it is task of the solver to elicit the this solution from the CSP I have only

specify binary constraints here between 2 variables. And the solver will eventually tell

me the these are the 2 possible solutions it may not express in this form but it gave me an

assignment of all possible variables and we will do that. So, without again loss of

generality we will assume that we are working with binary relations.

A binary C S P’s and a binary C S P’s we mean that C S P’s which have scopes of size

either 1 or 2 essentially scope of size 1 basically says that I am defining subset of domain

scope of size to subset of the cross product of 2 domains. So, binary CSP has scopes 1 or

2 and such a CSP is called binary CSP and it has been shown that any higher order CSP

can be converted to a binary CSP by adding more variable essentially. So, I will leave

this as a small thought exercise for you to work on how can I converted into how can I

convert this. For example, into a binary CSP if this was my original CSP which is the

solution itself how can converted into a binary CSP. So, we will stick to binary C S P’s

because we know the there is a whole lot of methods which obtain those problems and

other problems can be express as a binary C S P's. So, this map coloring problem is

naturally pose as a binary CSP ao.

(Refer Slide Time: 26:16)

Let say I have 3 countries will not name them and let us say my formulation of C S P’s

that I have a relation between this, this, and this. So, let us just called this x 1 x 2 and x 3

and let us say they have the same domains which is let say just 2 colors are allowed red

and blue. So, I think that I think the domains inside this circles and the relation is not

equal to now we can see that this problem has 2 solutions. You can color these 2 red and

this 1 blue or you can color these 2 blue and this 1 red essentially which means implicitly

there is a constraint between these 2 variables. But that constraint is not explicit it has not

been mentioned in the CSP the CSP only says that I have a constrain between x 1 and x 2

and between x 1 and x 3. I do not say anything about x 2 and x 3 but eventually off

course, this can be again elicit ate through a process of solving the constraint. And we

will try and see whether we get some insight into how we acquire new relations in the in

some manner essentially. So, how so let us look at these 2 problems. So, we have now

you know in those case 4 variables in this case 3 variables and we have some domains

and so on. How can we solve a C S P?

The simplest approach you can go back to state space search. You try you sign a value

for the first variable; you have sign a value for the second variable; you assign a value

for third variable assign a value for fourth variable and so on. Finish an assignment in

state space search we would have finish the assignment and then check whether it is goal

state or not in constraint satisfaction problems. We can backtrack earlier why because the

moment you know that some constraint is not being satisfied or some we have defined

the lotion of consistent assignment or consistent partial solution. The moment we know

that the assignment is not consistent we can backtrack from their essentially. So, you do

not have to assign values to all variables. So, in other words you do not have to assign

values to all variables. So, in other words you do not have to as in this case of course you

will backtrack only when you see the fourth when you try to put the fourth queen. But if

you let us try a 6 queen problem, you will see that there is some kind of processing you

can do when you can back track only or you might be able to backtrack only.

(Refer Slide Time: 29:24)

So, the simplest algorithm for solving a CSP is called backtracking it is a official name

of name of this algorithm essentially. So, everybody uses this term essentially. So, what

do we have? We have constraint satisfaction problems given x given d and given c

essentially. So, let us this outline this algorithm So, 1 issue that keep in mind is that let

say you have assigned some value to x 2 and then you are trying for values of e c. And

let say you assigned the third value to x 2 let us say in a set of domain you are trying the

third value 2 x 2. Then you go forward to x 3 and you find that there is no values to x 3

and you need to back track to the fourth value of x 2 and then try all values of x 3 again.

So, the fact that you every time you go back and forth you have to keep track of what

values left for you to try this algorithm does takes a very approach it makes a copy of the

domain every time.

So, it start up by saying i gets the value 1 di is a copy of di in this case d 1 and while i is

in this range n it does the following it calls off function call select value. So, let say x

gets a value from a function called select value I should also initialize a equal to empty

initially I do not have a value for the partial solution given a select value for this x i x i d

i c. So, what this select value function will do is it will give me the next value for xi from

its domain d i; d i prime actually with this consistent by this you mean it is consistent

with all the previous variables that have been given values. So, if xi is equal to 4 let us

say then if there is a constraint between 1 3 and 4. Then this value for the first variable

must be consistent with those first and third value since essentially the way that you have

just defined there essentially. So, it will written 2 things it will either it something called

null which means it cannot find a value then we say i goes to i minus 1 D i prime hence i

goes to i plus 1 you have got some value for x 1. You got some value for x 2 you got

some value for x 3 or let me try and draw more elaborate diagram let say x 1 has theses

values x 2 has or d 1.

So, let us say you are looking at x 4 now and let say you have always progressing from

let say your select value function always fix the value from left to right, because they are

in some list and it has selected this value for d 1 and this value for d 2 and this value for

d 3. And now we are trying to find if any of these values for d 4 is consistent with this

assignment we have here essentially. So their 2 thing that can happen either it can it will

say that no nothing is possible here which means I was go and look for a new value for d

3 here, because we are tried this. So, we are doing simple that first search over this 3 of

possibilities where you start with the first 1 here then the first 1 here then the first 1 here

and then keep back trap. If you cannot find a variable value here you must go back to this

1 and try the next value for this essentially which means you must set i is equal to i

minus 1. So, I do not need to change this right.

So, let see what select value is going to do essentially what it will do? So, let say you are

looking at xi from di and c it will say let us say a gets head of di if it is a list it takes a

first value and it says di di before that it must have check which says that if di is equal to

empty then return null. So, if any point di becomes empty it must return null otherwise it

it should go into the this loops looking for consistent value if a i if a sorry let us call this

a a i if a comma a i. It means the whole solution that has been constructed so far which

we will as a. So, this 3 values in this examples plus this fourth value that we are we are

just picked from its domain we put them all together and that is a new partial solution if

this is consistent then return a i. Well I called it x here you could have called it x it does

not matter. So, it is in a loop inside taking out values from the domain taking out and

showing them to speak essentially. So, when it was doing d 3 that d 3 prime had thrown

away these two values from the domain.

So, they were not there in d 3 prime anymore. So, when it backtrack it must try the next

value essentially then it must try the next value then the next value. And if you cannot

find there is must backtrack that is the standard. Therefore search chronological

backtracking that we have been talking about this other form of backtracking that we had

mentioned dependency directed backtracking was actually invented for solving for

improving this algorithm backtrackings. So, that instead of if you cannot find a value for

d 4 just to give an example that let say only constraint that d 4 participate it is in let us

call it R 1 2 4 which means this variables 1 and 2 and 4 essentially or if you want to work

with binary constraints and let us say R 1 4 and R 2 4. So, let say the only constraints d 4

participates as in with variable 1 and variable 2 with variable 2 then if you cannot find

the value for d 4. What is the point of looking for new value for d 3? Because d 3

anyway not influencing the consistency of the choice of d 4 essentially the only thing

that d 4 is getting influences by this relation R 1 4 or by R 2 4.

And the fact that you cannot find value for d 4 means that one of this relations you

cannot satisfy which means actually you should really jump back here. But of course we

will not get into that here, because it needs a little bit more formulization. So, that is the

general idea of dependency directed backtracking that if you can keep track of which

constraint is being evaluated. Then you can jump back to one of the variables in that

constraint in this case they have binary here essentially. But in our example we just to i is

equal to i minus 1 which is like doing chronological backtracking if you cannot find a

value for d 4 try a new value for d 3 and so on essentially. So, that is a i mean I have

written may be it is not quite correct something is missing here. But you can work that

out work out the details, but the basic idea is to go down this set of choices looking for a

new value for the is variable. If you cannot find it if you can find it go to the next

variable which is what we have doing here i is equal to i plus 1 di copied the domain and

solution that we have made and then keep going forward in that session if you cannot

find it backtrack. So, it is simple depth first search being done over this structure of the

now this algorithm is actually the simplest the starting point for constraint satisfaction

problem algorithms.

The other algorithm which improve upon that do the following is that for example, some

algorithms when they are doing select value though look head to see whether or given

choice will in future conflicts with some vary variable essentially. So, that is one kind of

you know improvement which is called look ahead algorithm then we have this kind of

intelligent backtracking algorithm. So, dependency directed backtracking algorithm that

we are talking about essentially and there are some other things that we will discuss. So,

that you get a flavor of that essentially, but this by and large is a the simple algorithm.

Now observe that backtracking happens the moment of partial solution is what is a

partial solution we are talking about here it is a value for a 1 for a 2 and up to a i minus

1. And we cannot find we cannot extend this to a i or the is value for the is variable or 2

x i. Let say we cannot find a value for this is variable and we backtrack at this point itself

we do not go further to see you know, because at this point as you can see no by

definition not right no a solution is a consistent assignment to all the variables. Or in

other words a solution is an assignment to all the variables.

So, that every constraint is satisfied and a partial solution or a or a partial assignment is

consistent. If it satisfies all the constrain for whom values have been selected or who's

scope fall within this essentially here. So, we say that constraint ci assignment a bar

satisfies ci if the scope of the ci is has a value which means it is already in the

assignment. And the projection of this assignment over this scope of S i is a subset of

this which means it which actually I should say belongs to this belongs word here belong

to this and in. So, that is only for with respect to 1 constraint ci and assignment is

consistent if it is satisfies the all the constrain with satisfy this property which means to

scope are contained in this and who's projection is contained in that correspondent

essentially. So, it can only be that it can never be the case that a that assignment which is

a partial solution which is not consistent can never consistency. So, when I was talking

about beginning on CSP one of the thing. So, I had said was that CSP is very interesting

because it allows you to combine search with reasoning now that reasoning part web

have not seemed. Let me just give you a motivation for that and then in the next class,

we will see how that is done. So, one of the another problem which is pose as a CSP you

know if you solving a crossword puzzle. Or if you are solving sudoku or something you

do a lot of reasoning in fact you are supposed to do more reasoning than search.

(Refer Slide Time: 45:08)

So, they these problems are similar they are called some of you must have looked at such

problem and if you just search on the web you will find examples. So, for example, you

might say send plus more. So, these are sort of arithmetic problems in which we the

digits have not been revealed, but they have been replaced by letters and your task is to

find out what digit does each letter stand for. So, we assume that each assignment is

distinct that that 1 letter stands for exactly 1 digit and so on. So, how would you solve

such a problem essentially? So, if you want solve this or let me take another example.

So, here is a another example. So, this plus this should give you apple essentially. So, if

you wanted to solve something like this then what you would do is you would create a

variable for each a place for each letter of course the number of variables are number of

distinct letters in this problem, but you want to find vales for them. So, these boxes that

an creating are boxes for values this a plus and obviously you must create some more

boxes which are for carry over.

So, 4 boxes for carry over and you can define the domains of so these variables so the

domain of this is 0 slash 1, because we adding 2 numbers we can never have carry over

moves and 1 and the domains of these are 0 to 9 essentially. So, the kind of reasoning

that Sangeetha was talking about we can do here essentially. So, for example, you can

observe that this must be 1, because you can never be get a value of more than 1 which

means this carry over must of course we are not interested on this. But never the less the

what the moment we have said this a a equal to 1 we know that this is equal to 1 and this

equal to 1. We can fill in the value there t is 9, why t 9? And it must be distinct this a p

and t are distinct they cannot stand for same digit. So, which means this p cannot be 1

and in any case p cannot be 1 So, if t is nine then what is p is 0 this must be 1 we have 0

here also know and we have nine for t here we have nine here nine here So, this must be

eight this must be 1 So, we know this must be 3.

So this is 0, now, we need to fill in this is 8. So, this leaves only 2 for this. So, we have

off course, solved in this problem now, and we are solved it through a process of

reasoning certain some rezoning with it you know this can only be 1 and know this kind

of stuff. Now, if you off course, were not should I say smart enough to do this kind of

reasoning you could still have try this algorithm backtracking here you could have said

try a value for a try a value for b and so on and so forth. Off course, we have to express

the constraint, how do we express the constraints that this plus this must be either this

must be either equal to this plus this or this plus this this plus carry over 1 and modulo

10. So, we have to express that carefully essentially, but the point is that we a try to make

here is that solving constraint satisfaction problems not necessarily have to be done

through a search method like backtracking. They can be done through other processes

like reasoning in some way now can this reasoning be done in general purposely

essentially.

Of course, here we are exploding the rules of arithmetic and it turns out that yes indeed

you can do a certain amount of. So, this process is called constraint propagation. So, we

are saying that if this is 1 this must be 0; this is 0; this must be 9 and this must we are

propagating the constraint. So, what are we doing here basically reducing the domains of

the variable we have reduce this from 0 to 9 to just 1 value 1 and just to 0 and so on so

forth. And the moment we reduce the value of some domain some variable we can

propagate a reduction to another domain. This idea of propagation is of course very

common in reasoning. And we will see in the next class little bit about how this can be

generalized. And we will look at another interesting problem that propagation demands

that quite effectively. So, we will stop here with this.

