
Artificial Intelligence

Prof. Deepak Khemani

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture - 36

Non linear planning

So, in the last class we looked at goal stack planning and one of the observations we

made was that, it essentially does backward listening, and it takes a set of goals to solve,

serializes them and tries to solve them one by one essentially. And then we saw that like

suspense showed that there are certain problems where you cannot serialize the sub goals

and solve them independently and arrive at the final solution; you may have to do extra

work to, finally, come to this thing.

(Refer Slide Time: 00:47)

So, today we want to look at an approach which is called nonlinear planning and it is

named and it is known by many other names. So, lot of people have looked at it also

known as partial order planning which kind of stands for the fact that the plan may be a

partial order of actions not necessarily a sequence of actions. So, far we have said in the

simplified world that a plan is a sequence of actions; we do action a 1, then we do action

a 2 and then we do action a 3 and so on. But this allows us to have actions, plans or

recognized plans as a structure which is a partial order, which means that you are not

committing to the order of actions essentially.

So, to take an example, supposing you have to wear shoes for going out or something,

then you have four actions to be done which is, for example, wear left sock, wear right

sock, wear left shoe and wear right shoe essentially. Now it is not necessary that you

choose a particular sequence of these four actions. The only thing that you have to do is

to wear the left sock before you wear the left shoe and wear the right sock before you

wear the right shoes. So, as long as you satisfy this constraint of this order, then the rest

can be done in any order. So, in that sense, this kind of planning is also known as least

commitment planning.

And by this we mean that in the process of planning, you do not commit too much

essentially; you only commit and we will see what are the kind of commitments you

have to make as little as possible as little as necessary to solve the current whatever sub-

problem that you are solving. This is also known as plan space planning, and again we

are familiar with this notion. We have talked about solution space planning; we saw, for

example, that when you want to solve SAT like problems or TSP like problems, you

construct candidate solutions and do some perturbation in them or we also saw that when

we are doing branch and bound with TSP that you work with partial solutions.

That you initially start with a set of all possible to us and then gradually partition them

into subsets eventually homing on to towards you are looking at. So, this is in that flavor;

it is in the space of possible solutions essentially. So, plan space planning basically

works with partially specified plans, and there is a refinement operator step. And there is

a refinement step which refines plans in the sense that you specify them more and more

essentially. Now a partially specified plan or the partial plan is denoted as a four topple

which is a set of actions or operators A which are part of the plan.

So, we are not saying anything about where they lie in the plan; all you are saying is that

these are actions as part of the plan. And these actions may be partially instantiated

which means instead of saying, for example, unstake a from b, you might say something

like unstake x from b which means that you basically want to achieve clear b, for

example, and if there is something on b, then you want to unstake it essentially or you

might also say unstake a on x, for example. So, partially specified actions may be

allowed essentially, then there is an ordering relation which basically says that action a

happen before action b.

So, we will specify order explicitly as supposed to implicitly in the planning that we

have been doing so far. So, the planning that we have been doing so far can be seen as a

state space planning. And so if you remember states space planning, so you combined

selection and placement of actions; of course, this is more true of power state space

planning and backward state space planning and little bit lets true for goal stack

planning. But in forward state space planning and in backward state space planning, a

forward state space planning you says this is s; this is by a 1. I go to some explain and

then I choose a 2 and I will go to s double prime and so on.

In forward state space planning, the twin task of choosing actions and placing actions in

the plan are done simultaneously. They are sort of so closely coupled that you cannot

distinguish between the fact of choosing and scheduling them, because the process of

looking for action says that I am looking for the first action, then I am looking for the

second action, then I am looking for the third action. So, both the things go together.

Likewise in backward state space planning essentially; you are choosing the last action,

then the second last action then the third last action and so on essentially.

In nonlinear planning or partial order planning, we do these two things separately. We

sort of distinguish between the fact that an action is necessary for necessary part of the

plan, but we do not necessarily say where the action should be, okay. So, for example, if

you are planning a trip from here to Mandy, then you might say, okay, our necessary part

of the plan is to somehow get from let us say Chennai station to Delhi station; let us say

you are going by train. So, you have decided what the action is, but you have not stated

when that action will take place in your plan in a sequence of actions that.

You will say that somewhere in my plan, there must be this action of catching a train

from Chennai to Delhi. So, this is the flavor of partial order planning or plan space

planning or least commitment planning is that you have said that, okay, I need to take a

train from Chennai to Delhi, but I have not said at which point if because eventually my

actions will be sequences of actions at which point will I actually be taking this train

essentially. Likewise, another action might be booking a train ticket essentially. Now I

could do it at any time before the journey; assuming, of course, that we get tickets, but

this is not always the case but still.

So, this thing about combining the selection and the placement of action is forced in state

space planning. Because you are working with states in plan space planning, we are

working with the notion of these partial plans. And we can say that these two things are

dependent of each other. Of course, eventually we will have to impose certain order on

the actions, but when we are talking about plans, we say these are the actions in the plan

and some actions may have certain ordering which you will state in the ordering relation.

And this basically says that a happen before b and so on and so forth.

Then we have a casual relation; let me just use the terms c here which I will come to in a

moment and then we have a set of binding constraints. So, what do I mean by this? I

might say at some point that an action stack a on to x. So, I will use this lower case for a

variable just for a moment is part of my plan. I might even say that this action comes

before something and happens after something and so on and so forth which I will say

here, but at some point I might say that x equal to b here. If I add this extra bit of

information, then I have added something more to the plan which says that this action

must put a on to b essentially or I could even say x not equal to b.

I could add any kind of a constraint binding constraint to variable essentially or I could

say that x belongs to some domain of let us say block set I have; let say blue block set or

something like that. I could do all this sort of things; I could add extra constraints which

tell you how the variables are bound essentially. Here we are talking about casual links,

and the general idea is that this is a triple where you have an action a; you have a

predicate p, and you have an action b. And what you are saying here is that a produces a

predicate p and b consumes a predicate b predicate p essentially.

So, for example, p could be holding a, and what is there action which might do that? It

could be something like unstack a from y, and there might be another action like put

down a. This forms a triple and we see this as a causal link between two actions a and b;

in this case unstack a from something and put down a. And we say that unstack a from

something is providing a predicate or producing a predicate holding a because that is a

effect. So, p is a P belongs to effects of a and p belongs to the pre conditions of b. So,

there is a predicate like this if you have expressed the predicate like this as such.

So, all these are sets, sets of actions, sets of ordering links, set of causal links and sets of

binding constraints, and this partial plan is represented by a portable like this. And if you

have asserted a triple here which says that a p b, we are saying that in our plan a

produces a predicate p and that p is consumed by b essentially. So, obviously, the

moment I add such a causal link, I must also add an action that a happen before b and

you can say that this either happens implicitly or you must do it explicitly. So, this is a

structure of a partial plan; as you can see in this partial plan structure, I may specify

something; I may not specify other things.

So, I may have let us say six actions and I may have ordering relations only between a

few of them and causal links between a few of them and binding constraints for some of

them essentially. This is in keeping with this notion of least commitment planning, and

what we are saying here is that we will add only as much to the plan as it is necessary for

solving the sub problem we are trying to solve. So, if you go back to suspense anomaly,

in goal stack planning, you are committing to solving one sub goal first and then the

second sub goal. And then you are committing to ordering them in the particular way

that you are doing; we do not want to do that. We will try to do add constraints only

when necessary. So, in that sense its least commitment.

A word about plan space planning; so we are not working in the space of states anymore.

We will start with some initial plan and we will apply the refinement step to get new

plans out of that. The search space contains only plans or partial plans and partial plans

are described by this portable essentially. So, eventually what we want to do is look at a

partial plan, choose a refinement step and there may be more than one refinement step.

So, some of you have to select one; come up with a new partial plan and do this

repeatedly. Choose the refinement step; come up with the new plan and so on. So, one

question that one might ask is when will one terminate this.

Now one thing that I would like it to sort of ponder over and think about is the following

that even if I have a small state space; let us say I have these three blocks like in

suspense anomaly a b and c. There is only a finite number of ways in which you can

arrange this c blocks. So, the set of states is finite essentially, but even for such a domain,

the set of possible plans is infinite; maybe we will come to that, but I want you to think

about this a little bit, okay. So, what is the initial plan? The initial plan this we will call

as pie zero; we will always have an initial plan. And the initial plan has two actions a 0

and a infinity.

It has one ordering constraint which says that a 0 happens before a infinity, and it has

nothing else. This will always be our initial plan. Remember, keep in mind that states do

not exist as far as this planning algorithm is considered; we are only looking at plans or

partial plans essentially. So, now the objects that we are manipulating are only plans

essentially. So, of course, one question will arise us to when do we terminate because we

can no longer say that apply a goal test function to a state, because we do not have state

anymore in our this thing. We will have only plans essentially.

Now what are these actions? A 0 has no preconditions and its effects is equal to I just use

this notation to start it. So, of course, every planning problem will have a different a 0

action and a 0 action simply produces the start state essentially its effect. When I say

this, it is basically a set of predicates, okay.

(Refer Slide Time: 18:50)

For example, in the suspense anomaly, we said this is C A B; this is the start stage. So,

we have an action; let me draw it here, whose preconditions is the empty set and whose

effects are these things on C A on table A on table B, clear B, clear C and A. So, this is a

0 action. As you can see every time you define the planning problem. So, what is the

planning problem? A planning problem is a given set of actions. If you are looking at the

state space project then the set of states in a start state and a goal state and a set of action

that you can use to generate the moves essentially.

So, now, we have said that we are doing away with the notion of states at all. So, instead

of the start state, we have a start action and what the start action says is there is an action

whose effects are these precondition this start space predicates essentially that somehow

produces that.

(Refer Slide Time: 20:33)

And if our goal is to have A on B on C, then my a infinity is an action which has no

effects but whose preconditions are what I want to achieve. So, on AB and BC; this is a

infinity. So, this is my starting node in the search space of partial plans, and this is a

partial plan which has two actions. One action which produces the start state, other

action which consumes the goal state and I have specified anything else except that the

start stage happens before the goal stage which we have said here. The start action

happens before the goal action or a 0 happens before a infinity.

So, if you now try to remember, when we are talking of TSP and we say that we partially

specify we say that we have only one edge specified which will go from Chennai to

Bangalore. Then we say that everything else could be anything. So, it was a set of

solutions. Likewise, this partial plan pi 0 can be seen to stand for a set of plans in which

this is the first action and that are the last action. Now intuitively we can see that we will

have to somehow make the connections between these and the kind of connections that

we will need to make is that how do we generate the. So, I must have some action.

So, a little bit like backward state space search; some action I must have stack a on b

which will have an effect on a b which I will link to this essentially. So, this is like

saying that I have specified now one more action in my plan that I must have the stack a

b action, and along with specifying this, I am going to specify the few more things. For

example, I would say that there is a causal link between stack a b and a infinity and stack

a b is producing this predicate on a b which is being consumed by infinity. So, I must

establish a causal link.

And one of the things that we would want to do in partial order planning is to somehow

add causal links and see that they are not disturbed later essentially and various people

have tried various approaches to that essentially. So, this is the causal links which is

doing that essentially. So, let me say this.

(Refer Slide Time: 23:44)

So, let say you unstack a from let us call this b here in the different planning problem and

then you want to generate this holding a and you want to link it to put down b put down a

essentially or instead of putdown a, let me choose a different action which is to stack; let

us say a on c. I want to illustrate what I mean by this disruption of causal links

essentially. So, what am I doing here? I am saying that I have an action unstack a; it

produces holding a which is consumed by stack a onto c or instead of c, you can use a

variable x or something like that, it does not matter.

And let us say this arrow stands for a causal link essentially and implicitly we assume

that wherever causal link goes and other link follows that this much happen before this.

So, it implicitly captures it essentially. Now I have said that my plan is a partial plan.

Now supposing I have some other action floating around in my plan which says that

stack let us say d 1 to y. So, let me change my example a little bit. Let us say this is

producing it is producing holding a, but it is also producing clear b and then I am saying

unstack stack x on to b.

So, this also illustrates a fact that when I am considering two actions, they do not

necessarily have to be continuous essentially. So, I am not saying that this action

happens immediately after this. I am saying this happens after this sometimes, but this

action unstack a b; one of the things it produces is clear b and for the stack action x on b,

I need to consume this clear b action. Because I can only put something on into b if b is

clear. So, I want to emphasize the fact that that they are not contiguous; this could

happen at supposing it is eventually you produce a linear plan because it is a one arm

robot and it can only do things in a linear fashion.

So, let us say this is the fifth action, and this is the twelfth action. So, I am not saying

anything about that; all I am saying is that there is a causal link from this action to this

action which means it is producing something which this is consuming. And there is an

ordering link which says that this was happened and sometime only later this must have

happened. And now somewhere in my partial plan, there is a action floating around

called stack d onto y which says that you stack this object d onto some variable y. Now

we can see as I say that let us assume this is the fifth action and this is the twelfth action.

What if this was the seventh action sometime in between and what time this y became

equal to b; remember we can do these binding constraints. So, some point I might say

stack for some reason that stack d onto b. So, there is a danger that this causal link that I

am interested in is going to get disrupted by this action. And my planning process must

somehow take this into cognizance and try to do something about it; we will come to that

in a moment. So, some of the older planning algorithms, there was an algorithm called

tweak one of the first nonlinear planning algorithms. This was written by a guy called

Ariston Tate.

So, if you look of Tate and tweak, you will find get some information on the web. They

use the term clobbering which modern planning people do not use, and they also use the

term declobbering. And I was told that Ariston Tate has one of these online courses on

planning which one of my acquaintances was telling me about. So, I am sure if you

search for this online course, you will hear lot about tweak and this process essentially.

So, what do I mean by clobbering? I mean I am clobbering the casual link. This action

threatens to clobber this causal link.

And if it clobbers it, another action might declobber it essentially which means that even

if I let say stack d on to b at some later point I might say unstack d from y because

eventually I want to stack b on to y. So, I am just trying to give you a flavor of the nature

of partial order planning that you keep throwing actions into your partial plan, because

you somehow discover that those actions are necessary. Like, for example, deciding that

you have to take a train from Chennai to Delhi and then you keep adding more actions.

When you add more actions you have to be careful about things like this essentially.

That casual links are not disrupted essentially, then when we talk of links like ordering

links; one is to talk about consistency. The ordering links should be consistent, and what

do I mean by this? You cannot say that a happen before b and b happens before c and c

happens before a, then you have a cycle and then that is not consistent essentially. So,

another thing that the planning algorithm will have to do is to know what is the planning

algorithm we are talking about.

(Refer Slide Time: 30:55)

We are talking about a set of refinement steps and the refinement steps are of four kind,

add an action to the set a, add ordering link to this set of ordering links, add the casual

link to see. Anyway it says whenever you add this, you have to also add one here or add

a constraint. So, what we are saying is that we will start with a partial plan; we will start

with this partial plan always an action a 0 which produces the start state as it is showed

here and an action a infinity which consumes the goal state as we have shown there. And

then we want to fill in more and more stuff; how do we fill in? We have a series of

refinements steps.

What do refinement steps do? They may add an action; for example, I said here that you

must add this action stack a and b, then I must add a causal link between this and a

infinity and an ordering link between this and a infinity. So, I could choose any one of

these refinement operators, and that is where the search will come into play. And

eventually, I need to refine the plan more and more which means specify the plan more

and more. Initially, when I have only a 0 and a infinity, I could have an infinite number

of plans which would fit into this and which would still be a solution.

(Refer Slide Time: 32:50)

So, what is a solution? When do we terminate? One way to say it is that, okay, if you

want to decide whether a partial plan is a solution, then you could at look at it from the

state space perspective, which means you completely specify it. Complete; that means a

slight b here; they do not any variables in the plan. Insensate all variables to something,

produce a linear order or in other words do a topological sort, because given a partial

order, you can always convert it to a consistent linear order. And that process as I am

sure you know is called topological sorting and this topological sort of pie will give me

some pie prime.

And then I will just use the old mechanism of progressing from the start state, applying

the actions one by one, because now I have sequence of actions. I will apply the first

action, then the second action, then the third action and so on and check whether the last

state that I get is the goal state or not. Of course, I could do that; the travel is the

topological sorts could be many. So, do I check for one sort or do I do for all. So, if you

go back to this shoe wearing problem which no doubt you have encountered at some

point.

You could first wear both the socks and then the two shoes, then both the sox could wear

in any order and then the two socks two shoes in any order or you could first wear the

left socks, then the left shoe, then the right socks, then the right shoe; all these

minimizations of the partial plan that we talked about but we did not draw are valid

plans. They are valid ways of wearing a pair of shoes; do I need to look at all those socks

and then do that? That would be too painful. Instead the partial planning community has

come up with a different test for a solution plan and we say that as well plan has no

flaws. Of course, we need to clarify what do we mean by this essentially.

So, what are we interested in? We are interested in a way of looking at a partial plan and

saying whether it is a solution plan or not, it is a solution or not. And implicitly, what we

mean is this that if this was a solution, then I could take any ordering of the actions and

that would any consistent ordering by which you mean that if there is an ordering

relation in the partial plan, it must be respected in the solution plan in the linear plan, and

that is called topological sort. I can do with any topological sort and that will be a valid

plan.

But I do not want to actually do this process of making linear orders and testing,

applying that, check for validity function. I want to look at the partial plan itself and

make it this observation essentially, okay. So, it should have no flaws. So, what do we

mean by flaws? There are two kinds of flaws; one is called open goals. By open goals,

you mean no casual links. So, if you look at my partial plan of three objects which you

have to somehow figure out from this stuff on the board, I have one action a 0. I am

trying to solve those Sussman anomaly problems; I have one action.

So, this is my starting position and a 0 essentially produce this starting position. I have

one action a infinity which has these two preconditions; one of them has a causal link

which is stack a on b, but this instead intern has more casual links or more preconditions.

So, you must be holding a. Then b must be clear; I think that is all, right. So, if I look at

this partial plan of three objects a 0 stack a b and a infinity, I have three open goals or

three unsatisfied goals; one is clear b, one is holding a and one is on b c. And I say if I

have an open goal in my partial plan which means I have a unsatisfied goal or I have a

goal which does not have a causal link, then that is a flaw in my plan essentially.

So, a solution plan must not have open goals. If it has no open goals, then it could be a

solution plan. The other kind of flaw is called a threat, and what we saw here was a

threat essentially. What is that threat? A threat and action threatens a causal link. So,

causal links can have threats from actions essentially. When is this situation a threatening

situation? It must satisfy three conditions. So, I will just mention them today and in the

next class we will take it up from there.

First thing is that it must be somehow undoing this predicate that the casual link is

supporting. Remember that every causal link has a predicate produced by one consumed

by the other. If it can somehow produce lot of clear b; so if this action has an effect not

clear b, then it could be a threat, why? Because this action stack something onto b; it

requires b to be clear, and this action is producing that or clobbering that predicate. So,

how do we express this view? We say this that we cannot unify this tear by and by unify

for the moment, we will just assume that we cannot assign this value to this variable

which means, if y becomes equal to b, then this action could be a threat, but that is only

one condition.

There are two more conditions. The other two conditions are that this action happens

after this action and before this action. If all these three conditions were to be true which

means that I can put y equal to b in my plan? I can add an ordering link between unstack

a b and this like this which means it is consistent to add this ordering link. And I can add

an ordering link like this which means this action happens before this action. If all these

three things happen, then we say that the theta is materialized essentially, and in effect, it

will no longer be a valid plan, because once you have put d on to b, you cannot put this x

on to b essentially.

So, something has gone wrong with the plan essentially, but this is only a potential

threat. It is a potential threat, because my plan is a partial plan; I do not know what this

value for y is. I can force it to be not equal to b; for example, I said you can do

something like this. I can say do not stack it on to b, then of course, I have removed the

threat or I can say force it to happen before this action. Then also I have sort of evaded

the threat or I can say force this action to happen after this action essentially; that we will

see the algorithms for resolving flaws.

But we have this idea of a threat now and action a or let us say an action c threatens a

causal link a p b; if it is consistent that it can produce lot of p if it is consistent that it can

happen after a and before b, then it is a potential threat essentially. And of course, you

resolve that threat we will have to see that one of those three conditions does not happen

essentially. So, we say that partial plan is a solution plan if it has no flaws and by this we

mean, it has no open goals like for example, here we have three open goals this one this

one and this one. And it must have any threat essentially.

In this example, I have only three open goals. So, may be my step would be to put in the

action which will produce this or put in the action which will produce this or put in the

action which will produce this. And this is the general flavor that once I have flaws in

my plan and the flaw should be either open goal or a threat, I must produce a solution for

the flaw which is to say somehow takes care of that flaw essentially. So, the high level

algorithm for partial order planning or plan space planning or least commitment planning

or nonlinear planning is to start with a empty plan a 0 n p t, which basically is telling you

what the start state is and what the goal state is. Keep refining it till there are no flaws

left essentially.

Once you have no flaws, you must still have a partial order; you may not have specified

a complete order. Like for example, in this shoe wearing example, but that would still be

a plan. And by this we mean we take any consistent linearization of those actions, and

that action will be a plan in the sense of those plans being a valid plan in the state space

perspective that we have seen earlier. So, today we have just specified what do we mean

by a partial plan. So, this is four topple made up of a set of actions which may be

partially instantiated the set of ordering links which may not be complete, a set of casual

links which may just link some actions with other actions and set of binding constraints

which says that some variables can takes some values or cannot take some values and so

on.

And we have defined what does it mean for it to be a solution plan that it should have no

flaws, no open goals and no threats, and task is to keep refining a partial plan till it has

no flaws essentially. So, we look at this algorithm in the next class when we meet which

is on next Friday.

