
Artificial Intelligence

Prof. Deepak Khemani

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture - 35

Goal Stack Planning Sussman's Anomaly

(Refer Slide Time: 00:14)

We are looking at planning. In the last class we saw two approaches; one was a forward

state space planning, and the other was backward state space planning. The forward state

space search; forward state space planning; thus, forward state space search, it starts

from the start state and keeps applying actions, till it finds a goal state, considers actions

in forward direction. This one considers actions in a backward direction. It constructs

plan also, in the forward direction, and this one, constructs the plan in backward

direction. So, in that sense, the two processes of looking for actions and constructing a

plan, happens very in a closely coupled fashion. In forward state space search, we start

looking for the first action and then, as soon as we pick a first action, we say this is the

first action of our plan.

In this manner, we construct the plan also, in a forward direction. In backward state

space search, in the likewise manner, we start looking at the last action, looking for the

last action; what could be my last action, and then, also construct the plan in a backward

fashion, by saying that will be my last action of the plan, essentially. Now, if you

remember, we had this notion of relevant action here, and the action was said to be

relevant, if the effect of a; intersection goal was not empty, and if it has no negative

effects, which kind of, distracted the goal. We had the notion of a relevant action and we

had a notion of regression. We could regress a goal over an action. So, we would get a

sub goal, g prime, if which is obtained as g minus the effects of a, because we expect that

the actions will; actionable, produce the effects. The whole thing union p conditions of a.

In the similar manner, we had for forward state space search; the notion of an

applicability of an action and the notion of progress. So, a state could progress over

another state. So, you could progress over it.

This regression progress and the notion of applicability and relevance was used basically,

to do both these stars, that looking for actions and building the plan at the same time. So,

the process of building the plan is that you move from one state to the next, and then,

look for an applicable action; then, move to the next state, and look for an applicable

action; move to the next state. Here, you are looking at a relevant action. So, you look at

a goal, find a relevant action, regress to a goal g prime, and try to find a new action at

that point. So, what we had observed then, was that this was a sound process that, when

you progress from one state to another; what you get is a legal state, essentially. So, this

was sound, but this was not sound.

We had seen that you could regress to a set of predicates, which could not have been part

of a state. So, for example, you might have something, like holding a and holding b, at

the same time. That, of course, not possible in a state in which, because we are

considering one arm robot. So, you could; this process of regression was not sound, in

the sense, it was not closed under the set of states. You could start with a possible state

and you could end up with something, which is not a state, whereas, this was sound and

you would always end up in states, which is why, when we did backward state space

planning, we said one of things to do is that after you found a sequence of actions, check,

whether it is a valid plan or not, before accepting it. So, this was a plus point of forward

state space planning, and this was corresponding negative point of backward state space

planning. On the other hand, in forward state space planning, we had large branching

factor.

Because the state was a complete description; it may have hundreds of facts. There may

be hundreds of applicable actions. Forward state space planning would consider all those

hundreds actions, and choose one of them, essentially. Backward direction search had

low branching, and the reason for that was that we were focusing on the goal; we are

trying to see, what we need do to get the goal, predicates into our state, essentially. So,

this was a plus point for backward state space search. Today, we want to look at an

algorithm, which combines both these features. So, what do we mean by this? We want

to look at an algorithm, which will consider actions from the goal point of view, in a goal

directed fashion, but it will construct plans from the starting state to the goal state,

essentially, which means that we will be benefiting from the low branching factor of

doing goal directed search, and also, the soundness of constructing a plan in a forward

manner, essentially.

You should ponder by little bit over this, as to why is the progress action sound, and the

regress action not sound, essentially. So, the actions are not symmetric in that sense,

essentially; you cannot prove both ways. These are sort of an arrow of time, which says

this is a precondition, and this is a post condition. So, you can only construct plans by

looking at pre conditions and making post conditions.

(Refer Slide Time: 07:38)

The algorithm that you want to look at today is called goal stack planning. It is actually,

one of the earliest planning algorithms devised, and was in fact, used in the skips

program, which was used to control the robot in Stanford that we have spoken about,

essentially. The general idea of goal stack planning is the following. What I will do is I

will give a high level description of the planner, and then, we will look at an example in

a little bit more detailed, essentially. So, as the name suggests, this uses a stack to do the

reasoning, and we do the following that; let us also consider an example, along the same,

at the same time. So, let us say that this is an example. Again, we have resorting to the

blocks while, because we are familiar with it, but you must keep in mind that these are

general domain independent algorithms that we are considering. This is a starting state

and I am not drawing anything, which is relevant. You can imagine that there are 50

blocks, which I have not drawn here, which will not interfere with our plan. So, we just

want to focus on the planning actions today.

(Refer Slide Time: 09:19)

The goal state is that; let us say is that you want a on b, and you want b on d, essentially.

You actually, do not care what else is true, essentially. So, the goal is on a b, and on b d.

As long as these two predicate are there in my state description, I would call that a goal

state, essentially, which means, as long as a is on b, and b is on d, that whichever state it

is, is a goal state. You can think of this as a set of states in which, this part is common.

Everything else can be in some manner, essentially. So, this is basically, a set, and the

algorithm that we are looking at, will do the following.

(Refer Slide Time: 10:22)

It pushes; you start of a pushing the goals that you want to achieve on the stack. So, the

top of the stack will always, contain the goals that you want to achieve, essentially.

When I say goals, I basically, mean the predicates of the goal, essentially. Now, let me

do this here, and let me write the algorithm, here. So, goal stack planning; push goals on

to stack; then, you pop the stack. There are various things that can come out of the stack.

If it is a predicate; I will use very loose language here. When I say, if predicate, I mean a

statement like; on a b, or on b c; or holding a; or some such things. Then, there are two

possibilities; one if true, which means, it already holds in the world; then do nothing.

Else, it is not true; push an action on to the stack. So, this is a basic process that this

algorithm follows. The stack has, you are pushing these goal predicates on to the stack.

In our example, we push these two things on to the stack; then, you pop. So, it is the

alternates between push and pop; you pop the stack. If it is a predicate that comes out,

then you check, whether the predicate is true. If it is true, then you do not have to do

anything. If it is not true, you push an action on to the stack, essentially. What action?

You should say the element action; here, define the notion of relevant action.

If it is not a predicate, it must be an action there. Only two kinds of objects in a domain,

either predicates or actions; if it is an action; I forgot one thing. You push the action on

to the stack and push. So, let us say this action is a; push pre conditions on to stack. You

first, push the action. Then, you push the pre conditions of the action, and you can get

some intuition here, that you are pushing an action. Then you are pushing the pre

conditions, and then, you will look at the top of the stack, and there will be the pre

conditions of the actions. If they are true, then this thing will happen; you will not do

anything; you just remove them. Eventually, if the action comes to the top, then you will

say, yes, I have found one action, essentially.

There is an extra step, which is, push each predicate on to the stack, essentially. So, this

part is that, if then part, then for this if, we have these else, pop, action, or we have

already done the pop. So, add action to the plan, and by this, we mean that a plan

becomes plan followed by dot where, the dot operator is a concordinate operator, which

says that you take the plan and add the action at the end of it. So, you found the next

action, essentially. So, this part, that you are talking about, it constructs plan in a forward

direction, is taken care of by this operator, essentially. The new plan is an old plan with

the action at the end. Initially, of course, old plan will be empty. The moment you find

the first action that will go into it, and then you find the next action that will go into it,

and so on and so forth. So, this is a high level algorithm for goal stack planning. Let us

see how it actually, executes this. We will, sort of, try to simulate for this small problem;

what goal stack planning does? Before I do the simulation, let us make an observation as

to what this is really, doing. It is taking a set of goals; the pre conditions. Every action

has a few pre conditions. So, it is a set of goals, or set of sub goals, you might want to

say, and push it on to the stack.

Then, it pushes each predicate of the pre conditions on to the stack. We should do the

same thing here, essentially; push each predicate. We will see the usefulness of this step

in the example that we see, but the important thing to note here, is that it is taking a set of

goals, or a set of sub goals; we use the term goals and sub goals, interchangeably. The

initial goal is the only final goal. Everything else is a sub goal, but we tend to use the

term goals, also for that, essentially. When we have a set of goals to solve, for example,

in the pre conditions of an action, we put them one by one into the stack, which means

we have serializing the goals, sub goals, essentially. So, this is saying; serializing the sub

goals. In effect, we are saying, we will first achieve one sub goal. Then, we will achieve

the next sub goal. Then, we will achieve the next sub goal, and in that fashion,

essentially. So, we have, in some sense, if you look at what A star did, it also said, I am

breaking up a goal into sub goals, and I will solve each of them independently. This is

doing that, but it is also imposing an order in which, you will solve them. So, that is why

we use a term; it is serializing the sub goals, essentially.

(Refer Slide Time: 17:44)

So, our initial sub goals are those two, on a b. I will just use, I will not use brackets, just

to make it short; and on b d, and I will go by stack downwards, and I hope that you get

used to that idea. When we pop stack, the stack we will just put a line across, to say, that

element has been popped. So, you must visualize this stack going down. Let us say that

we put these in this order that we say, you achieve on b d, and you achieve on a b. So,

this is the bottom of my stack, and my stack is going like this. So, whatever done, I have

pushed the two, I have pushed the goal, which is these two elements on to my stack, and

then, I pushed each predicate in some order. So, we are not saying in what order; we

saying in some order; push them in to this stack. This is a place where, you can, sort of,

try to think of heuristics; what is the good order of pushing things. So, this is a goal

given to us.

I want to emphasize again, that considering of actions is done in a backward fashion. So,

we are now, only trying to see what actions will achieve these goals, which is exactly

like, what backward state space does; except for that backward state space says that

moment, for example, if you look at on a b, it will say the last action must be stack a b;

stack a on b. It starts constructing the plan also, in a backward fashion. We will not do

that here; we will wait a little bit more patiently, till we are sure that whenever, we add

an action to a plan, its pre conditions are true. Backward state space planning does not

look at pre conditions at all. It only looks at the relevance of an action. It says if an action

is relevant, it could be the last action, and we saw that this leads to the trouble that the

plan construction process is not sound. So, we have on a b, now, and we go to the pop

cycle.

So, we push this out. This is gone and then, we have this condition. It is a predicate and it

also, happens to be true, in my given state; you look at the value in a given state. It is true

so, you do not do anything. Then, you pop the next thing out on b d. Remember, this was

popped out first, and now, we are talking about on b d. So, let me, sort of, use an arrow

to denote that we are considering this; just for our sake. That is not true; on b d is not true

in my, this state, and therefore, I push and action, which will make this true. So, the

action that makes on b d true is stack BD. So, let us say we use this arrow to depict the

fact that we have pushing an action, essentially.

So, you push an action and we push the pre conditions of the action. What are the pre

conditions of stack? I will you short forms; h for holding; holding b, and clear d,

anything else; you remember these preconditions for stack. You must be holding b, and d

must be clear, I think that is about it. Then, I have pushed the individual actions. While,

we are doing this example, we will use a simple heuristic, we will assume that the

holding action is the last action we want to do; last goal we want to achieve. Remember,

these are two goals. If you can, just to recall, this is a, let me put brackets here; that we

want holding b to be true, and we want to check, whether d is clear to be true, and we

will push each individual action.

So, the first action, the first predicate we push, will be the last predicate we will check,

and let us use this heuristic between ourselves. In practice, of course, an algorithm may

have to back track and try the other option or something like that. That we will check for

holding b later. First, worry about; let us worry about clear d, essentially. So, this is a

push space. In a push space, everything gets pushed; the action and its pre conditions,

and individual goals in the pre conditions. We will refer to them also, as goals, because

this is a goal stack now, essentially. So, we know push, we know pop this c d out.

That clear d is not true, but we must insert; we must push an action, which will make

clear d true. So, this is a situation; c is on d. So, we can use an action unstack. So far, we

are doing backward search c d, and then, the preconditions of unstack c d, which are that;

on c d must be true; and arm empty must be true; and one more, clear c must be true.

Then, these individually, again, in some order, let me choose arm empty as the last

predicate. Intuitively, I just want to reduce some amount of extra work we want to do

here, but this is a matter of choosing heuristics. So, everything is pushed here, like this.

Basically, this is a cycle; I have not mentioned it here, but this whole thing is in to a

cycle here. Then, you go and pop this clear c; now, clear c happens to be true in our

world. So, we do not do anything. On c d also, happens to be true; on a also, happens

true, and it is not a surprise in particular case; that the conjunct of all three on CD, an

AE, an CC happens to be true.

So, we remove this from the stack, and now, in the next pop, an action comes out, which

is this last part of the algorithm, which says, if it is not predicate, it must be an action,

and add action to the plan. So, this becomes our first action; unstack c from d. The world

has changed now. The world is, I am holding d. Whenever, I look at a predicate, I must

look at this world. Now, you will notice that when I am talking about actions, I am going

in the forward direction. This was the given start state, and this is the first action that will

be there; part of my plan. The first action will be unstack c from d, essentially. So,

everything that we do here will be sound, essentially.

That also, does not lose sight of the fact, that we are considering the actions in a goal

directed fashion. We started off by saying that what is necessary for making on a b, on a

b true, on b d true, and then, we said to make on b d true, you must do stack b d, and

then, we discovered that to do stack b d, we need to do clear d, and to do clear d, we can

do unstack c d, and we find that we are able to unstack cd, and so, we put that as a first

action. So, this signifies the plan. So, that is gone now, from the stack. Then, it has got

holding b as a next action. Holding b is not true in this world; you are holding c,

essentially. Let me grow the stack from here, that when I pop holding b out, I am forced

to insert an action. So, I have a choice here. Notice that to make holding b true, I can use

an action; unstack b from something, or I can use the action; pick up b, essentially. We

will assume that we have some non determinism going on here, or you could look at the

state and try to decide, which of those two actions is a relevant action? So, we will

assume that somehow, we are used pick up b.

So, the stack is now going like that, and along with pick up b, the actions, which are arm

empty, and on table b, and clear b. So, let us say I look at them in this order or in the

same order; on table b and clear b. So, I have pushed this action and it is preconditions.

Then, I pop the top of the stack. Remember, the top of the stack is actually, at the lower

end of our list; I have popped this. Clear b is not true in the world that I have here. So, I

must insert an action, which is unstack something from b, but we will assume that we

have figured out that it has got to be a from b, and the preconditions for that are on a b,

and arm empty and clear a. So, let us say arm empty, on a b and clear a; clear a is true.

So, I can remove it from the, pop it from the stack. On a b is also true. So, I can pop that

from the stack, but arm empty is not true, because this is the world that I am looking at. I

am moving forward from here. I am holding c.

So, I must make arm empty to make arm empty, I insert an action, put down c and the

preconditions for that are holding c, and that is all. So, you pop this and you pop this, and

this becomes a second action; that you have put down c. So, now, the world looks like a,

which is the world. I have done two actions. One action I have done is unstack c from d,

and then, I was in this state. Then, I have put down c, then I am in this state; that is a

second action. Then comes this conjunct, on a b is true here, arm empty is true here, clear

a is true here. So, I can remove this, and then, I can pop this; this becomes the third

action. Now, the world looks like, you are holding a. The rest is all on the table. So, this

is that.

Let me label these states. This is a state after action one. This is a state after action two.

This is a state after action three, which is unstacked a b. Then, the next thing on top of

stack is, on table b. I pop that and I see that is true in this state. Then, arm empty is not

true. So, I have to achieve arm empty. Let me start here. I need, I remove arm empty of

course, and then, say put down. So, I am holding a. I need put down a. Again, there is a

choice, which I am, sort of, skinning over here. The choice is really, that either, I put a

down, or I put it on b, or put it on c, or put it on d, essentially. May be, you can do a little

bit more sophisticated reasoning here, but I am, sort of, just to illustrate this, I am just

saying that we have something, like a nondeterministic choice happening, which means

magically, we are making the correct choice; this is to put down.

For which, you must be holding a. So, you can do this, and this becomes the fourth

action. After the fourth action, everything is on the table and the arm empty. So, I must

go back by a stack I have; I find this conjunct here; arm is empty, on table t b, and clear

b; everything is true. So, I pop that, then this becomes my fifth action; pickup b. So, at

the end of fifth action, I am holding b, and a c d are on the table. So, this is gone from

my stack, and this is where, we had taken off. Now, you are holding b and clear d. You

can see that in that fifth state, both are true; you are holding b and clear d is true. This

goes off. Now, we have the sixth action coming out. The moment an action comes out of

the stack, we know that it is applicable. Why, because we have just popped their

preconditions; pre conditions must be true, essentially. So, it must be applicable. So, this

is the sixth action; stack b on d. So, this is how it looks and arm is empty.

Now, observe that in a manner of speaking, we started off with two sub goals; on b d and

on a b. We decided to do on a b first, and in this case, it was already true in this state. So,

we do not have to do anything, but as you can see that was a right choice, essentially. If I

have to achieve, if we look at the goal state, which is that a must be on b, b must be on d;

you can see that the way to achieve the goal is to first, achieve on b d, and then, put a on

top of the stack that you have, tower that have constructed, essentially. We choose an

opposite order, and we ended up finding a plan, which is the six step plan, which says

that you unstack c from d. So, this is the state. Then, you put down c. Then, you unstack

a from b. Then, put down a. Then, you pick up b, and stack it on to d, which is what, this

did, essentially.

So, on the surface, it looks like we have achieved both these goals, but if you look at this

state, when we achieved the second goal, which is on b d, which is what we were doing

all this while, and as a result of which, on b d is true here. We have undone the first goal

that we had done, essentially. My first goal was that a should be on b. We started off

with a on b, but by the time, we finished on b d that, a now, lying on the table. So, you

can see this is the reason why, we have added both the conjunct of the goals as well as

individual goals. So, we are saying we want achieve this conjunct, but we will do it

individually, will serialize the sub goals; we did this; then, we did this. Then, we found

that in this sequence, we, somehow ended up, undoing some of the goals. So, when I

popped this out, I will find that this is not true.

So, I will insert both the goals again, into the stack. So, let us say if we inserted in the

same order here; that I insert on b d and on a b first; first, on b d, then on a b, which

means I am first doing on a b and then, I am doing on b d, as I did in the last time,

essentially, but now my starting state has changed. That is my starting state. So, I will

not go into the stack, because we do not have a space left on the board, but you can

imagine that to achieve on a b, we will do the same thing; stack a on b. To stack a on b,

you must be holding a. To be holding a, you must pick up a. So, you pick up a and stack

a on b; these two actions, you will end up doing. So, you will achieve on a b.

Once you achieved on b, you will go back to on b d, but this time, on b d is already true,

because in that state, as you can see, it is already true. Only thing you are doing is in the

seventh and the eight step, you are picking up a from here, and stacking it on to b. So,

this is a final state that you are looking at; a is on b and b is on d, essentially. So, both the

sub goals are true, and then, I am finally, able to pop the goal, and that is a terminating

criteria. If I can pop the goal and come up an empty stack; that means, I found a plan for

solving my problem, essentially. To emphasize what goal stack planning does, it does, it

considers plans in a backward fashion. It looks for actions in a backward fashion by

putting the goals that you want achieve, on to the top of stack, starting with an empty

stack of push, and it always, looks at the goals set on the top of the stack, which means, it

is doing backward reasoning, but when it comes to constructing a plan, when it comes to

saying that this is my first, these are my actions; it starts off by choosing the first action

first.

So, if you look at this plan, this is a first action. Even, when you want to actually,

implement the plan, you want to first, unstack a from b, sorry, unstack c from d; put it

down on the table. So, it is doing, it is constructing the plan like a forward state space

planner. It is looking for a plan like a backward state space planner. So, it is taking the

advantage of both the things. It is only focusing on the goal by looking for a plan, or it is

making sure that when it is construct a sequence of actions, it is a valid plan, because it is

doing it in the forward fashion. In the process, it ends up serializing the goals, but we

have to be extra sure that we do not disturb the goal; so that, we add this whole thing or

doing this extra thing, all over again, essentially.

Now, it turns out, and I will leave this as a small excise for you, is that if I had

considered them in the opposite order, which says that first, do on b d, then, on a b,

which inside inverted the order in which, I push up in to the stack. First, I would have

done on b d, which amounts to everything that we have done here, and I would have

ended up in that state. Then, I would have done on a b, and I would have just picked up

the a; this a, and put it on to b. So, there is an order I can choose in which, I am not

undoing the work done for the solving the previous goal. This particular order, I am

undoing the work. Of course, I did not have to do any work to achieve on ab, because it

was already true, but imagine that, a was on the table here, or something like this, and

then, I picked up a, and put on to b. Now, I would have undone the work that I have, I

am doing, essentially. So, there is an order in some cases, essentially.

(Refer Slide Time: 40:46)

Now, interestingly, it was shown by a guy, called Sussman, that it is not always possible

that such an order may be found. What order am I talking about? I am talking about an

order of serializing sub goals; so that, there is no disruption of previously achieved sub

goals, essentially. So, this particular example is known as Sussman’s anomaly. If you

just search on web, you will find this example.

The interesting thing about this is that he shows that, this kind of planning will not

always work; well, work in the sense, without doing this extra work, essentially; because

we are serializing the sub goals, we also call this as linear planning. I will achieve one

goal, then I will achieve the second goal, then I will achieve the third goal, and so on; I

will solve goals in a linear fashion, essentially. So, I serialize the goals, essentially. What

Sussman showed was that there are examples where, you just cannot serialize the sub

goals. The example is quite a simple one. This is a start state; c is on a and a is on b. The

goal state is a on b on c, which is very similar to that, essentially. Let me just, for the

sake of illustration, call this d, to make it identical to the goal state that we just looked at,

which means, this whole exercise that we did, will also hold for this. Of course, except

for the start state is different, but the main point is that I cannot think of two goals,

achieve on a b, and achieve on b d. Goal stack planning is forcing me to serialize the sub

goals in some order, and what sussmans showed was that you cannot serialize the sub

goals.

Let us see what happens. So, let us say you first, achieved on a b. I am not going to the

process, but we are just. To achieve on a b, what will you have to do? You will have to

pick up unstack this d from a, put it down somewhere, then we will have pick up a, and

stack it on to b; these four actions will achieve on a b, and goal stack planning will do

that. You should try it as an exercise. So, a will be on b, and d will be on the; and arm is

empty, and then; that means, you have first, done on a b, then you have to do on b d.

Now, if you do achieve on b d, you can see something very similarly, happening. You

will unstack a from a; unstack a from this stack, put it down from the table, pickup b and

stack it on to d.

So, what would you get is d. What we have shown in this example? As an exercise, you

should fill in the details and show how block, this goal stack planning will actually, do

this? When you first, achieve this, then you achieved this. So, when you achieved this,

this is true. When you achieved this, this is true, but this is a goal, and this is not a goal

state, which means, to achieve this goal on a b and on b d, I cannot, at least, this order is

not correct of doing things. Of course, I can do extra work; pick up this a and put it on d,

but that means, I am somehow missing the correct order, if there is one. What Sussman

shows was that there is no correct order. So, let us try the other order.

You can achieve on b d first, which is very simple. You just pick up b and stack on to d.

So, you have achieved on b d. Then, you achieve on a b. What happens; you have to

unstack b, put it down; unstack d, put it down; pick up a, put it on to b. So, you would

get a b d. Again, you can see the other order also, does not do the task. None of these two

paths leads to the goal, essentially. Of course, you can do extra work; that is a different

matter, but we cannot take these two goals individually, and say, I will solve the first

one, then I will solve the second one, and my task is done. I could do it here, if I change

the order of this goal. If I have done on b d first, and then, on a b, then I would have

solved the task in a serial order, essentially. What Sussman showed was that there are

these non-serializable sub goals, essentially. That in many problems, goals are not

serialized with.

So, that is a problem with this kind of planning, which we will also, call linear planning,

because we are serializing the goals and saying, I will do this first; and I will do this first;

and so on. Of course, this is something that we have observed earlier, in other situations.

For example, when we talk about solving the rubrics cube, then if you say I will do the

top surface first, and then, the middle layer and then, the lower surface and then, by the

time you finished the top surface and while, you are doing the middle layer, in the

middle, you upset the top layer.

Of course, those who know the solution know, how to get it back, but that is like doing

an extra work, essentially. So, rubrics cube is the typical example of a goal, which is

fundamentally, not serializable, like this problem, which means that there is no way that

you can achieve the first goal, and not have to achieve it later again, essentially. Such

problems are called non serializable sub goals, essentially. So, in the next class, we will

look at an approach, which some people call as non-linear planning, which allows us the

possibility of solving this kind of a problem, optimally. What do I mean by that? That, if

you just think about this problem, this Sussman’s anomaly; the best way to solve it

follows.

You unstack d, put it on the table; that is two actions. Then you pick up b, put it, stack it

on to d; that is two more actions. Then, you pick up a, stack it on to b; that is six actions,

but neither of these paths is going to give a plan with six actions. Of course, they will

even eventually, achieve the goal, but this will have to do two more actions here, and this

will have to do at least four more actions here, essentially. So, I cannot find optimal plan,

essentially. In the next class, we will look at an approach where, the possibility of

finding a optimal plan is kept open, essentially. You can see that; to find an optimal plan,

you have switch between goals, in some sense, that when you start by putting d on top of

a b. For example, when you start to do this, then when you put d; what you do? You

unstack d, and put it on the table, and you want to achieve a on ab. Then, you want to

certainly, realize that if you stack a on to b, you would not be able stack b on to d. So,

you abandon that goal of achieving on a b, and switched to the other goal of achieving on

b d, in which case, of course, you will find optimal plan, but goal stack planning, because

it serializes the sub goals. It says, I will completely solve my first goal and then, go to the

second goal, is not able to do that, essentially.

So, we will stop here, and in the next class, we will take up this non-linear planning.

