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We are looking at game playing and in the last class, we saw the minimax algorithm. If 

you remember, what the algorithm basically, does or what the game playing algorithm 

does is that there are two kinds of players; one is max, and the other is min. Max is trying 

to maximize the board value and min is trying to minimize the board value. The game 

tree consist of alternate layers of max and min. To starting with max node, there are 

some min children, and then, there are max children, and so on. This is the tree which 

minimax algorithm explores, and we saw that this explore, minimax algorithm does, is 

depth first search, left to right.  

Now, today we want to look at improvement upon minimax, which does not inspect this 

entire tree, up to this cape lie. So, this is cape lie search that we are doing. Can we do 

without looking at the entire tree? What minimax is doing is going down all the way, to 

this level and at this level, the evaluation function e of j is applied, and then, the values 

of these leaf nodes are backed up using the minimax rule. The minimax rule says that if 



you are backing up to a min level, you back up the smallest of the values of all the 

children. If you are backing up to a max level, you back up the largest of the values of all 

the children. So, at alternate level, we choose the minimum, the maximum, the 

minimum, the maximum, and so on. That is why, the algorithm is called minimax 

algorithm, but the question is that do we have to really inspect the entire tree, essentially. 

To consider that, Let us first look at a small example. Let us say you are playing this 

game of Tick Tack Toe, and for some reason, this is how the game proceeds. Let us say 

you play this and we are not drawing the game tree; we will just draw the board. The 

opponent plays this; Let us say. So, the opponent is mirroring your moves. You play this 

and then, the opponent plays this. Now, Let us say you are doing some search from his 

point; one ply search. If you want to, now, consider this move. So, you play this move 

here, or you are looking at this move. Then, you can see at this moment that if you are 

considering this move, then there is no need to look at all these other children. Why 

because this is a winning move position, and you have won the game. So, why consider 

the other moves at all, essentially. So, this is the idea that we will explore, up to a greater 

depth, essentially, and the algorithm that we want to look at today, is called Alpha Beta . 

A little bit of nomenclature, before we continue; max nodes are also called alpha nodes, 

and min nodes are also called beta nodes. Max nodes store alpha values, and min nodes 

store beta values. What are these alpha and beta values? These are the values of partially 

computed node, essentially. Let us see how these happen. 
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. 

Let us say this is the route node, which is the max node. We always play the game for 

max, and at some point of the game, Let us say max is trying to evaluate this particular 

min child, which is not the first min child, because it has already seen; remember, that 

we are going from left to right; it has already seen some min children, and the sub trees 

below that. So, it has the already explored the sub trees this side. It is trying to, now, 

evaluate this min child. What will it do? If the value supplied by this min child is higher 

than the values supplied by all these children, then this would be adopted; otherwise, 

those values would be adopted. Let us say this value is 10, to begin with. So, we say that 

alpha becomes 10, after this node is completely evaluated; it means that sub tree below 

that is completely searched; alpha becomes 10, because that is a value, this beta node is 

giving to this.  

Let us say then, we evaluate the second sub tree below that, and this happens to be 15. 

Now, we change this alpha to 15. So, this alpha value for this max node is the value it 

has seen so far, and the value comes from the left hand side of the tree, essentially. Let us 

look at an example of slightly, deeper example of this Tick Tack Toe game. 
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Let us assume that we are using this following evaluation function, that e of j is equal to 

count of the number of rows, or columns, or diagonals; available to max, minus the 

number of the same thing, available to min. So, essentially we will evaluate a board 

position by saying that how many are available to each side. For example, if this is the 

board position that we are looking at; let us say this is the board position we are looking 

at. Then, we can see that max has this row, one, two, three and four; two rows and two 

columns are accessible to max. For min, it is this column, this diagonal, and this row; so, 

3 to min, essentially. So, the value of this board position would be 4 minus 3 is min, 

essentially. So, we will use this evaluation function to illustrate this idea of cut offs, 

essentially. 
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Let us say we are starting the game from the beginning, and then, first we explore max, 

playing at this corner, here. Now, remember, the game playing algorithm are used as 

combination of search or look ahead and evaluation function. So, they do not evaluate 

this board position at all. They would look ahead a little bit for evaluating the board 

position at this, and then, back up the value essentially. So, let us say about, we are doing 

two searches that is easy to defect here. So, we look at one more level. So, at this level, 

let us assume that we are looking at this move for, when we are going look at all the 

moves for min. Let us say we look at this move for min. 

We evaluate this board position. Now, if you look at this board position and count them 

carefully, you will see that there are six rows or columns or diagonals available for max. 

So, 1,2,3,4,5 and 6. So, 1,2,3 sorry, 1,2,3,4,5,6, and if we look at min then, they are 5; 

they happen to be 6 minus 5. So, the board position of this is 1, essentially. Now, this is a 

max node. So, we are going to compute alpha values for this. So, let me draw this as the 

max node, and this is the min node, because it is min play here, and these on max nodes, 

but it does not matter. At this point, you can see that beta will become 1. 

The moment we evaluate this position and this node knows that this beta is 1. Now, what 

are beta values? Beta values are values of min nodes, and they are upper bounds on the 



values that they can take. So, beta values are upper bounds, and likewise, alpha values 

are lower bounds. What do we mean by this? We mean that once, this node has seen one 

value from a left child, which is 1, it is not going to accept any value, which higher than 

this value. From the remaining children, it is only looking for lower value. So, this beta 

value, which is the partial value, it has got from here, is an upper bound on the value of 

this node. It can only be 1 or less, essentially, less, if one of the children evaluate to less, 

essentially. So far, we do not have an alpha value, because none of its children is 

completely evaluated. So, we look at the second child. Let us say this is the second 

option, we are looking at. This, we can see, is symmetric in nature, that both are at two 

corners. So, the number must be equal to 0. So, I will leave that for you to verify, and let 

us see this one and this one. Now, if we count this, you will see that max has 1, 2, 3, 4, 5, 

and min has 1, 2, 3, 4, 5. So, let me know if it is wrong; 5 minus 5 is equal to 0. 

One thing, we should have done. The moment we saw this 0, we should have changed 

this value to 0, because beta has gone down to 0. Now, 0 is the upper bound on this 

value. Then, we look at this or may be this one is 1. 6 minus 5 is equal to 1. This one is 

again, symmetric. So, it must be 0, whatever, the count is. Finally, we look at one more 

move for win, which is this. Now, this turns out is max as 1, 2, 3 and 4; only 4 available, 

and min has 1, 2, 3, 4 and 5, minus 5 is equal to minus 1. Now, we have a new value for 

beta. So, beta becomes minus 1 and now, this node is, of course, completely evaluated, 

which means, it can say we can think of these as suppliers.  

So, beta nodes are suppliers to alpha nodes and below them, alpha nodes are suppliers to 

beta nodes and so on and so forth. So, beta nodes always choose the smallest value, and 

alpha node will always choose the highest value from what its suppliers have given. So, 

here we can see that alpha is equal to minus 1; that is the value this first beta node is 

supplying to it, which we can read as saying that alpha is going to be greater than equal 

to minus 1, which is the characteristics of an alpha node, essentially. So, from the other 

children that we going to look at for max, it is only going to be interested in a node, if its 

value is going to be greater than minus 1. 

Let us try the second option. Let us say max try this option, and we try the first option for 

min, and see this is the first option, which I have for min. We always begin from the top 



left hand corner, let us say. Now, we can see that, we have already seen this position. 

This is the opposite of this position, and the value of this is 5 minus 6 equal to minus 1. 

The moment we see this, we know that this is minus 1, and by this, you remember that 

beta is less than equal to minus 1. Now, here we have alpha is already equal to minus 1 

and this beta says, that I am going to be minus 1 or less. Though this alpha, in some 

sense, will tell this beta that we do not, I would not be interested in you any more; that 

you do not need to value it yourself any further; which means all these other children that 

beta was considering, like this five children we had here; there also, we would have five 

children. It would not be evaluated.  

So, this is the cut off which takes place, and this is called an alpha cut off. So, an alpha 

cut off appears at a beta node, which is a descendant or in this case, a child of alpha 

node. It happens when the beta node promises to be worst than or lower than or not 

higher than, rather, than what alpha already seen, essentially. So, after alpha has seen one 

side, it will now do this in a very control fashion, which is only, as long as we have 

better than minus 1, I am going to be interested in you; otherwise, do not explore the sub 

tree below that, essentially. So, this will get cut off and then, alpha will try; this is a third 

option. So, if we ignore symmetries, I mean, if we take into account symmetries, then 

you can see that max has only three moves to start with, either corner, or on a side, or on 

this. This small move, I will leave as an exercise for you to explore. The idea is basically, 

that a cut off takes place, when there is enough information, essentially. If we were doing 

10 ply search, for example, then the entire trees; 8 ply trees below this, would be cut off. 

So, the saving would be considerable in amount, essentially.  

The algorithm that we are looking at today; this alpha beta algorithm, essentially, is like 

minimax, in the sense that its searches from left to right, but it does cut offs along the 

way. We have illustrated one cut off, which is alpha cut off, which you can also think of 

as alpha induced cut off, and it happens at the beta node. So, beta node stops evaluating 

itself, if the parent alpha node tells it to stop evaluating itself. Then, it is an alpha cut off. 

In a similar fashion, beta cut off will take place at an alpha node, or it could be thought 

of a beta induced cut off, essentially. Now, these cut offs do not necessarily, have to be at 

the immediate level, essentially. They can happen at a much deeper level. So, let me 

illustrate that with a diagram. Let us say that you are evaluating this deep game tree. 
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This is the route node, alpha node and we are, this diagram, I am basically, repeating it 

here. We are evaluating this beta node and you have evaluated some part of the tree; so, 

always the left side of the tree, you have finished evaluating. So, we have got some value 

from here; alpha 1; from this side of the tree and essentially, what this node is trying to 

do is to see, if it can get a better value, better than this alpha 1 value. What is this alpha 

1? Alpha 1 is the best amongst these here, and it is time to see, if this node will supply it 

a better value, essentially. Likewise, this node may be looking at a alpha child, and it 

may have got some value, which we will call beta 1, from the left tree, that it has 

explored on the left side, essentially. So, this process continues. This has got some value 

alpha 2 from here. 

Then, this has got some value beta 2 from here. Then, let us say this is a node. Let us say 

that this is a beta node that we are about, we are trying to evaluate, essentially. Now, if 

this node we will call j, which means, we are evaluating this slowly, by looking at its 

children. The question we want; so, this has alpha 2 here. So, I hope this diagram is 

clear. Just imagine, this that depth first search, sweeping from left to right, and all these 

values are coming from the left side of the tree; alpha 1 coming from the left children of 

this, when it is trying to evaluate this. This, in turn, is trying to evaluate this. It has got 

some partial values beta 1. This one is trying to evaluate this. This has got some partial 



value alpha 2 and this has got some partial values beta 2. This has got some alpha 3 and 

this j is what we are trying to evaluate. The question we want to ask is; when will this j 

value reach the route, or in other words, when will this j value influence the game, 

essentially? Is it the node worth exploring? You can see that this j value will influence 

this node, only if it is better than alpha 3. So, that means, let us call it v j, that is the value 

of this node j, because we may be searching deeper, must be greater than alpha 3; 

otherwise, this node will take alpha 3 from here. Likewise, it must be better than alpha 2 

as well, because otherwise, this will take alpha 2 and also, alpha 1.  

Only if it is better than this alpha 3 value, because these are max nodes, remember, and 

they are looking higher values. Only if this node supplies the value, which is higher than 

alpha 3 and higher than alpha 2 and higher than alpha 1; will it influence the route node, 

essentially. Likewise, it must be less than this beta 2, because this is the beta node, and it 

is going to only take lower values and also, beta 1. So, we can generalize this and say 

that we need to evaluate this node j, only if v j is less than beta and is greater than alpha 

where, alpha is equal to max of alpha 1, alpha 2, alpha 3 or in general, all the ancestors 

of this node; all the alpha ancestors of this node. So, alpha must be higher than all these 

ones, and this value must be higher than that max of that. Beta is min of beta 1, beta 2 

and all the beta ancestors of the node, essentially. I just repeat, this node is worth 

evaluating only, if it is higher than this alpha 3, and this alpha 2, and this alpha 1, and at 

the same time, lower than this beta 2, and this beta 1, and all the beta ancestors, 

essentially. So, this alpha and beta can be seen as the bounce, within which, we want the 

algorithm to search; otherwise, it should abort the search or prune that below that, 

essentially. 

Let me write the algorithm first, and then, we will look at a slightly, more detailed 

example, essentially. So, I hope this is clear. So, we can think of this alpha beta as the 

window. If these are the values of the game three, then this alpha beta is a window. Beta 

is an upper limit and alpha is a lower limit. The absolute possible is plus large and 

absolute minimum is minus large. So, remember, we had said that the evaluation 

function can be something, like in a range of minus 1000 to plus 1000 or something like 

that; instead of 1000, I am writing plus large, some suitably large number.  



What the alpha beta algorithm does is that for evaluating any node, it passes a window 

and says, only if you can get me a value inside this window, I am going to be interested 

in that. So, again, look at this node. The window is defined by this alpha and this beta 

where, alpha is a maximum of all the ancestors, and beta is the minimum of all the 

ancestors. What will the node try to do, because this example here, it is a beta node; it is 

going to try to pull down this beta and say, I want a value slightly, lower than this beta. If 

it, alpha node try to raise the value. So, as we sweep this from left to right, this window 

gets smaller and smaller, and search progresses only inside this window; otherwise, the 

tree is pruned off. Let us write this algorithm, or at least, I will write a part of it, and you 

can write the rest. 
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Alpha, beta; it takes an argument j, which is the node, and a value; alpha, and a value; 

beta, which are parameters, essentially. These parameters are basically, the window sizes 

that are passed on to the node, essentially. Let me first ask you what should be the value 

alpha and beta, when we call the game playing algorithm at the root, essentially? So, 

alpha should be minus large and beta should be plus large, when the first time we call it; 

that means, windows completely opened. Then, the algorithm is simpler. It is basically, a 

small variation of the minimax algorithm that we have seen. So, if we assumed that we 

have a function, which tells us, weather j is on the horizon or not. You can do this by 



keeping some kind of a counter as you search deeper, so that, every time you make a 

recursive call, you also decrement the counter by 1. Let us say you are doing eight ply 

search. When you make this call, they count as 8; when you make this call, they count as 

7 and so on. When the counter becomes 0 that means, it is a terminal node on the 

horizon. The implication of being a terminal is that you have to apply the evaluation 

function stop searching further, essentially. So, if it is terminal, then we can say that v j is 

e j where, e j is the evaluation function that we are using in the game. Else, we have to 

evaluate still then, which means you looking at a node; it is not a terminal node. 

So, you have to evaluate all the children, essentially, one by one. So, for j, let us say i 

going from one to b. So, Let us assume that b is a bouncing factor, or every node has b 

children. We are going to evaluate them from left to right, essentially. If j is a max node, 

what do we want to do here? If it is a max node, like this one, for example, or this max 

node; it has got some alpha and beta bounce, given to it, and we want to evaluate this 

from left to right. So, this is j 1; this is j 2 and so on, up to j t; we want to evaluate from 

left to right, and we want to see, if we can get a higher value than what alpha has. 

Remember, it has to operate within this window, and seek a higher value, essentially. I 

will write the part for the max, and you write the part for min. So, if j is a max node, then 

what you do is; alpha gets maximum of alpha, and a recursive call for j i, the highest 

child, with the bounce alpha and beta; the bounce keep getting propagated. So, what does 

this step say? We are doing from; i going from 1 to b. So, for every i, we will evaluate 

the highest child, and if its providing the better value, which means a higher value, 

because we are using the max function here, then alpha. Then, we will update alpha to 

that, essentially. 

If alpha becomes greater than beta, then we say, return beta. What does this mean? Look 

at this alpha value here. It has got this beta bound coming from the top, which is beta 1 

and beta 2. If the value that we are trying to compute for this alpha becomes higher than 

this beta or this beta, it does not matter. Then, they are going to say that no need to value 

it anything here. So, we are making a return statement there, and say, return whatever 

beta bound is and that is the best you can do with this. So, this amounts to a beta cut off, 

because it is happening in an alpha node; it is dictated by the beta value; it is a beta cut 

off; otherwise, if j equal to b, sorry, i equal to b, which means you who have looked at 



the last child and evaluated it, and you already done this, choosing the best of this values. 

You can return alpha. So, this takes care of the alpha side of thing. The other option is l 

s, which means j is min; I will not write this completely, but you can fill it up yourself; 

this would be similar if i equal to b, return beta. This would be analogous, which says 

beta is min of beta and the recursive call. This test will remain the same; alpha greater 

than beta, because this test signifies that this window has closed in some sense. This 

alpha value has gone above the beta value. So, there is nothing left to explore, but the 

return value would be alpha, essentially. So, you can fill up those details, essentially. Let 

us now look at a slightly more detailed example of this algorithm. 
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Let us assume that we have binary search tree, and it is 4 ply deep. Let us draw the tree 

first. We will have 16 leaf nodes and since, a binary tree; there would be beta nodes 

sitting here, and then, alpha nodes sitting here, and beta nodes here. This is the root. This 

is the alpha node. So, I have just drawn the space that is going to be searched; the space 

of nodes; we have not drawn the tree. What we want to see is how will alpha beta 

algorithm explore this tree, essentially. Now, observe that the minimax algorithm will 

explore this entire tree from left to right, and back up the value. So, these beta nodes will 

take the minimum of what they get from here. Then, alpha nodes will take the maximum 

of beta children. This beta will take the minimum of these alpha children, and so on. So, 



you want to see what alpha beta does; we will fill in some random values, just to explore 

the algorithm here. So, it is during depth first search; left to right. So, it first goes and 

evaluates the first left most node in the tree. Let us, for argument sake, say that this value 

is 50, some random value, essentially. Then, it evaluates its next child. Let us say that is 

40. So, at this point, this beta is completely evaluated. Its value is 40 and since, this is 

completely evaluated, this alpha is equal to 40, which, remember, you must read as 

saying that alpha is greater than equal to 40, essentially. Then, it starts the next round. It 

looks at this, and looks at this. Let us say this happens to be 30, which means this beta is 

equal to 30. Now, you can see this relation between this beta and this alpha node. This 

alpha is saying, I am at least, 40. This beta is saying, I am at most, 30. So, this alpha 

node is not going to be in this beta node. So, we have an alpha cut off. I will just write 

alpha here, to signify, it is an alpha cut off.  

So, we are not going to look at this node, essentially. Then, we continue the depth first 

fashion; go here, go here, go here, and let us say that this is 70. So, this beta becomes 70 

at this moment. Then, explore this, and this is 60. So, this beta is 60, now, and this alpha 

is also 60. This beta is 40, because it is getting this 40 value from here, and it is 

essentially, asserting that I am 40 or less. This one is getting 60 from here, and we say, it 

is 60 or more, essentially. So, which means, this beta will induce a cutoff here. So, this 

will be cutoff, and this is the beta cut off, or beta induced cut off, essentially. So, we are 

not looked at those two nodes, those two leaf nodes. In fact, we have not looked at the 

entrie sub tree there, essentially. At this point, this alpha is equal to 40 and again, we do 

depth first search, and let us say then, this value is 30. 

Now, you remember this; a node is influenced or the bound that node gets, is influenced 

by all the ancestors. In this case, then, only one ancestor, which has a value, which is this 

root for this value is 40. Look at this beta node. This beta node is saying it is 30. Of 

course, it could go lower than 30, but at the moment it is 30. So, this now induced the cut 

off, what we call as a deep cut off. That, because this is upper bounded by 30, this node 

is never going to be interested in what is going to happen here; so, might as well, cut it 

off, and this is an alpha cut off. So, the alpha cut off does not have to be induced by a 

parent node. It can be induced by some ancestor, of course, which is what, we have said 

here, explicitly. When you have said that this alpha bound is actually, the maximum of 



all the alpha bounds, essentially. 

So, this alpha is 30. It is saying, I am going to be 30 or more. Let us say we come here; 

we come here. Let us say this happens to be 70, and this happens to be 80. Now, this 

becomes 70, and this value of also becomes 70, and this beta is 70. So, what is 

happening? Now, when we explore this child, it is getting the bound of, beta is 70 and 

alpha is 40. It still has the window opened, so, we must explore this tree below here. So, 

we do that in the depth first fashion. Let us say that this is also 30, then again, we 

introduce a cutoff here, very similar to these same values. So, this is now, 30 or Let us 

say now, this is 80. So, we do not get this cut off. We do investigate this node. Let us say 

this happens to be 90, and this happens to be now, 80. This says alpha is equal to 80. 

Now, look at this beta and this alpha. This beta says, I am at most, 70. This beta is 

saying, I am at least, 80. So, we have a cut off here.  

We can see that we did not look at this node; we do not look at this node, and we did a 

fair amount of cut off. So, out of the 16 nodes, this alpha bit algorithm has not seen 6 

nodes; it has seen only 10 nodes, essentially. As an exercise, I will ask you to fill in 

values, so that, the number of cut offs are maximum. At the same time, as a different 

exercise, fill in the values, so that, there are no cut offs at all. Now, it is possible that the 

values are such, that there are no cut offs, essentially. That happens, because the 

algorithm is searching from left to right. What does left and right mean? It basically, 

means in what order you are generating the moves, essentially. This is some game in 

which, you have two moves; let us call them, a and b. You are generating a first, and 

then, b, essentially.  

Now, what this exercise will reveal to you is now, what is a mini max value of this game 

tree? This is 70, this is 40, and this is an alpha node. So, this value is actually, 70 where 

is it coming from? It is coming from this node here. This 70 is coming here. This 70 is 

going here. This 70 is coming here; which means that the game that will be played, if 

only on this analysis; would be that max would make this move; min would make this 

move, because that is what min can do best; it is getting 70 here, and 80 there; max 

would make this move, and min would make this move. 



If you go and flip this tree left to right, which means, this game value would come on the 

left part of the tree. Then, you would notice that the number of cut offs are moved, 

essentially. In other words, if somehow, the best moves are made earlier, if they are 

made in the left part of the three, then the number of cut offs will be more. This, you can, 

sort of, understand by constructing an example in which, the best moves are on the left 

hand side. In fact, if you try to construct a tree in which, you fill in values, so that, the 

number of cut offs are maximum, you will see that the game value will come from this 

left side of the tree, essentially. Now, that has an implication for game playing programs. 

If you are writing a game playing program, you would like to generate your moves. For 

example, you are doing the Othello program, and you have some set of moves to 

generate. You would like to generate the moves as far as possible, in such a manner that 

the best moves are considered first, and then, the worst moves, essentially. So, the 

question is; how can you order moves, essentially? Remember, we are discussing this in 

domain independent fashion. Of course, you can apply some domain knowledge to saym 

these moves are to be considered, and so on, but in a domain independent passion. Any 

suggestions? 

Student: Heuristically  

Heuristically, but how do you choose that heuristically? 

Student: Evaluation. 

So, here is what many people do. Remember, that when we are playing a game playing 

program, you are doing some search up to some Cape lie, deep search, here. 
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Let us say up to this level or whatever, and you decide to make. Let us say this happens 

to be the move that you are making, essentially. This is a move that you made, after you 

have done this whole game play search, essentially. Then, what happens? Then, its 

opponent turns to make the move, because opponent is going to play the next move. You 

have made a move, and opponent will play a move, but what you have access to, is your 

search tree, and has to below this max node. Now, you will have to your next move at 

this, assuming that this happens to be the best move for min, which will be the case, 

because your analysis search that you are considering the best moves for min. Min is 

taking the minimum value from all these. Let us assume that this is the minimum value 

that min can get. Next time, when your turn comes, you will have to play from here, 

which means, you will be searching the tree, starting from here, and going down, 

essentially.  

Now, you can exploit the search that you did in the previous round, below this node, 

because you are getting values from the all the children. You order the children, so that, 

the higher order min children come first, and below that, the lower order max children 

come first. You can order the sub tree, so that, the best nodes are coming to the left side. 

If we do that you are likely to get more cut off, which in the real tournament 

environment, will mean that your move would be faster, and you would have more time 



for the subsequent moves, essentially. You can also do some amount of analysis in 

opponent’s time. This is opponent’s time, here. What do the mean by opponent’s time? It 

is when opponent is thinking. So, you have made a move, and opponent is thinking; what 

to move? That time, in the real world is available to you. You can also think of what 

opponent might move, and what you would respond; you could do this analysis in 

opponent’s time.  

The only thing is, of course, in the game playing assignment that we are going to give 

you; you will not get this opponent’s time, because you will have a separate thread 

running. We should be invoked, only after opponent has made their moves, but in the 

real world game playing situation where, you take your own computer to play. Again, 

you do have this time to do some further analysis. One analysis that we can do is to try to 

order the moves in such a way, that the best moves comes first, essentially 

(Refer Slide Time: 46:36) 

 

Now, this algorithm suffers from this common trade that we have been observing 

throughout this course, which is that it is a blind or uninformed algorithm. It searches 

from left to right. Of course, this desire to order the moves is, in some sense, the desire 

the give it a direction, but given a fixed order of moves; can we have an algorithm, which 

will have a sense of direction, which is, which will be like a best first search algorithm? 



Indeed, there is such an algorithm called sss star algorithm, but we will take that up in 

the next class.  

We will stop here now, with alpha beta. 

 

 

 

 

  

 

  

 

 

 

 

 


