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Branch and Bound, Dijkstra’s Algorithm 

  

Today, we are going to shift focus, a little bit to see, where we are going. Let us just do a 

quick recap of what we have done so far. 
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We started with state space search and then, we went on to heuristic search and from 

there, we went to optimization. The idea was, that the idea of optimization came in, 

because we said that instead of looking for the goal state, we will try to optimize the 

heuristic value of the evaluation function, or the objective function, as the case maybe. 

The idea of using heuristics was to find solutions faster, because we discovered that 

search spaces tend to grow exponentially. We were looking for a function or some kind 

of heuristic knowledge, which comes from the domain, which will guide the search 

towards the solution, and not go off in other directions, in the hope that we will find it 

faster, essentially, because we do not want to run into exponential times. 

Today, we want to shift focus and look at the other aspects. So, once you find a solution, 

let us say, you are solving problems in some domain, or let us say it is a logistics domain, 



or you are running a courier company, and you have to send people all over the place to 

collect parcels and deliver parcels, and things like that. The solution that you find has to 

be executed, and has an associated cost, essentially. Today, we will look, we will shift 

focus to finding solutions, which have an optimal or least cost solutions, essentially. That 

is critical in many domains. To take an extreme example; if 10 years from now, you start 

a company in which you are setting up a colony on Mars, then you can imagine, that the 

cost of each trip is going to be significant, and you would like to have a solution in 

which, there are minimum number of trips, essentially. So, maybe, on the way you stop 

on the Moon, or something like that, or more coming down to Earth. If you are traveling 

like a traveling salesman, going through a few cities; you may want to optimize the cost 

of your tour, or if you are using some vehicle, let say, daily in a city, because of your job. 

Unless you happen to be a politician in the government or a bureaucrat in the 

government, who get apparently unlimited fuel supplies. You would be worried about 

the cost of fuel, and you would want to find solutions, which are optimal, essentially. 

So, our focus is going to be on finding optimal solutions, now. Of course, one might ask 

as to how is this different, from the optimization that we have been studying so far 

because, for example, we said that we want to solve the TSP, when we were looking at 

example of optimization. So, it is not really different; it is a same process; it is just that I 

want to be clear on the motivation. Earlier, we went for this process of devising the idea 

of a heuristic function, and trying to find optimal solutions for that, or trying to find 

optimum values for the heuristic function. In the process, we, sort of wondered into 

optimization, which is what we interested in, but we never looked at solutions, which 

guarantee optimality. We only looked at randomized methods like simulated, unhealing 

and genetic algorithms, and colony optimization, which are likely to work most of the 

time, but not necessarily guarantee optimal solutions. So, what we want to do now is to 

look at methods, deterministic methods, which will guarantee optimal solutions. 

So, these are the two different aspects of problem solving; one is, how long do you take 

to solve the problem. Heuristic function is devised to speed up that process. The second 

aspect is, how good a solution you find, and that is the aspect that we are going to focus 

on today. How to look at optimal, how to find optimal solutions? So far, we have not had 

a notion of cost, in the solution finding process and whenever, we spoke about quality of 

a solution, we said the number of steps or the length of the solution. So, now, let us 



introduce cost, which means we will introduce a weight for every edge in the search 

space and then, we want to find solutions, which are optimal cost. So, it is like finding 

the shortest path, and that is an abstraction of all these problems that we are looking at, 

essentially; finding shortest path in a graph. Let us start with a small example graph, just 

to illustrate the algorithm set that we are looking at. 
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So, let us say, this is a start node and then, you go to some node called A. The cost of 

going to that node is 4, or you can go to B. The cost of going to b is 5 and the cost of this 

edge is, let us say, 3. Then, you have, let us say, a few more nodes; C, D, E. Let us give 

some cost to these. So, let us say, this is 6 and let us say, this is 8 and let us say, this is 4 

and let us say, this is also, 4. Let us say, this is an expensive edge, costing 15 and this is 

2. Let us say, this is goal node that you want to reach, and the cost of going to goal node 

from here, is 2. Let us say, there are some more edges that I am not drawing, because we 

do not want to have an exploding search space. Let us say, this is an example, you want 

to start from S, and you want to find the path to G, which is of the shortest paths, 

actually.  
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So, the general algorithm that we will follow can be abstracted as follows; that refines or 

extends the least cost, and I must emphasize least estimated cost, because we do not 

know the actual cost. So, the main problem solving step, which is basically, very similar 

to what we were doing earlier. We have a move gen function, which generates 

successors and you have to choose one of them, and so on. But, we can view this now, a 

little bit more, abstractly, in the sense that we are working in the space of possible 

solutions. We do not have all the solutions; we have some of them, partially defined, 

essentially with every partial solution, we have an estimated cost. When we say 

estimated cost, we mean them; estimation of the cost of the total solution, if that was to 

be completely refined. So, we will use a term; refine, to say that if we have a partial 

solution, and we had a little bit more information about that solution. 

For example, if you are solving a TSP, if you have put in five edges, and if you had one 

more sixth edge, then that is a little bit more refined. So, in the process of you keep 

refining partial solutions, till you have a complete solution and then, you would stop. The 

algorithm that we will use is that; extend the least estimated cost partial solution, till such 

a solution is fully refined because, in the end, we are interested in a solution, complete 

solution. So, actually, I must clarify what I mean by this, till such, and we will see this is, 

when the example comes out; that till the least cost solution is fully refined. I, instead of 

writing that, I have just written; till such as solution. But, you must read this such as; a 

least cost solution is fully refined. Just imagine this situation where, you have some 



partial solutions and some, at least one fully refined solution, or more than one fully 

refined solution, and you have estimated cost for them. Now, for fully refined solutions, 

there is no notion of estimate; you actually, know the actual cost, whereas, only for 

partial solution you have to estimate cost. 

Now, if one fully refined solution has a lowest cost, then we will say; we can terminate. 

That is going to be the basic idea. We will discuss this as to, when is this idea sound; or 

when this is idea, guarantee to give you the shorter solution. This is the loop that in 

which we will operate, in the next few classes. It is just that our notion of partial solution 

may change, as you go along little bit. So, let us look at this from the state space 

prospective, as we have done earlier. When I look at this algorithm, you must keep in 

mind, that the similarity with Dijikistra’s algorithm, essentially. So, I take it that 

everybody is familiar with Dijikistra’s shorter spark algorithm, which takes a single 

source and finds shorter spark, to the rest of the graph, essentially. So, we are in some 

sense going to mimic that algorithm, but our goal is not to find solutions to all the nodes; 

but we will be doing something similar, essentially.  
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The algorithm that we are looking at is called Branch and Bound. By branching, we 

mean this process of refinement, or extension, and by bounding, we mean excluding 

some solutions. So, remember what I said that at the point, which we terminate, we will 

not bother about some solutions, which are not fully refined, because we would be able 



to exclude them, or we would be, they have gone beyond some bound, that we are 

working with, and we do not need to refine them, any further. So, this general idea is 

called Branch and Bound. So, let us first simulate this algorithm on this graph. 
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So, you start with a search node and it is very much like the other algorithm that we have 

seen. We generate its children, in this case; A and B. In this stimulation, we will assume 

that we are not going to remove duplicates, essentially, because it is possible that we may 

later find a shorter path, to a given node, essentially. So, we do not want to say if you 

have seen that node, do not generate it again, essentially. So, you can say this is 

searching over paths. That instead of saying, that we are visiting a node, for example, D 

or C, we will say, we are inspecting a path from source to D or source to E, and we are 

looking at different possible paths, and we will. So, if there is one path S, A, D, then this 

is a different candidate from another path, which is S, B, D, essentially. So, we will treat 

them as separate. So far, we are saying, if you have come to D before, do not bother. You 

have already; so, do not put it into open. That is what you use to say. 

Now, the cost of s is 0. The cost of this path is 4, and the cost of this path is 5, so the cost 

of that edges. The algorithm is simple; refine or extend the least estimated cost partial 

solution. So, instead of saying that, we are taking the cost of the complete partial solution 

and estimate of the complete partial solution. We will work with the known cost that we 

have, which is a cost up to A, essentially. So, as far as we are concerned, we have two 



partial solutions here; one goes, say, goes from S to A; the other, say, goes some S to B. 

This one cost 4 and this one cost 5, and we will say that this is better than S. So, we do 

not have any sense of direction. So, this is a simple process, we will follow. We say that 

this has been inspected. In Dijikistra’s algorithm, you would do something, very similar.  

I will just do the two algorithms in parallel. In Dijikistra’s algorithm, you would 

initialize S to cost 0, and everything else to cost infinity, and maybe, in some versions of 

the algorithm, some description of the algorithm, you will color them white, and you will 

color this; or color everything white to start with, which is like putting them on open, or 

something like that, and pick one node from there. So, there is a stage of relaxation in the 

rest of the algorithm, which says that once you relax this node, or once you inspect this 

node S, you relax all edges going out of that, which means this cost originally was 

infinity, and now, it is reduced to 4. Because, we know that you can get from S to A is 4. 

So, we revise this cost to 4 and revise this cost to 5; exactly, what we are doing here, 

except that in the Dijikistra’s algorithm, you would do it on the graph itself. Then, you 

would pick the lowest cost note. So, the Dijikistra’s would also pick this and color it 

black, for example, and then relax these three edges, which I am also saying, that we will 

generate these three edges. So, one simplifying assumption while drawing, we will make 

is, that we are not going to go back; we are not going to allow loops, because we know 

that loops are only going to increase the cost. So, if I go back, go from S to A and A to S, 

it is not going to help me, in any way. One assumption, that we are working with like, 

the Dijikistra does, that cost are all positive here. So, pick the least cost node S A. So, let 

us say, this also, I am coloring it black here. The Dijikistra also would color it black, and 

there would be a pointer pointing back to this. Then Dijikistra would color this one, 

black, and try to; when you relax this edge, you find that 4 plus 3, 7. So, it remains like 

that, whereas, this becomes 8 this, in arrow, which comes here, this becomes 19 and an 

arrow comes here. 

So, there are these costs associated with nodes, which I am not writing there; which I am 

writing here. From A, you can go to B, or you can go to D, or you can go to E, and the 

costs are, as we said, 19 for this; D is 12 and B is 5. So, very similar to what we were 

doing in heuristic search, always pick the lowest cost node, except that when you are 

doing heuristic search, it used to be lowest heuristic value, note; here, it is the lowest 

known partial solution cost. So, this is, sorry, this is not 5; this is 7. From S from A to B, 



then if you come like this, it is 7, essentially. Then, you pick this B and from B, you can 

go to C, or you can go to A, or you can go to D. If you go to C, then you have a cost of 9. 

If you go to A, then you have a cost of 8. If you go to D, then you have a cost of 11. So, 

this process continues, the rest of the couple of more rounds and then, we will stop. The 

lowest node now is B. So, we do this. As I said, we will not allow loops. So, we will not 

allow A or B to B, because A or b is in the path here. So, the only thing you can do is, go 

to C or to D; C D. So, 7 plus 4; this is 11 and 7 plus 6 is 13. So, you can see, we have 

found two paths to D; one path costing 11, which goes from S to B to D, which is cost 

11; the other is from S to A to B to D, which cost 13. 

Let us say, there is another edge, which I have not drawn earlier; forgot to draw earlier. 

This is costing 6, 7 units, let us say. Now, this is, A is the lowest node that I can expand. 

From A, I can go to; I cannot go to S; I cannot go to B; I can go to D or to E, and the cost 

of going to D is 16, here, and cost of going to E is 23, here. I have done away with it. 

Now, something interesting is happening that I am going to expand C. C and D is 

interesting, because they are the two nodes, which lead us to the goal, essentially. So, at 

this point, this node D has become the lowest cost node. So, this is 9, 16, 23, 11, 12, 13, 

and 19. I expand this C and from C, I can go either to D, along this path, or I can go to G. 

If I go to D from here, it is going to be 9 plus 4, 13. If I go to G from here, it is going to 

be 9 plus 7, 16. 

So, I have found one path to the goal. So, let me highlight that path. I am going from S to 

B, B to C and C to G, and that is the path represented by this node G here; S to B, B to C 

and B to G. So, this is gone into closed. So, should I terminate, or if you go back to what 

Dijikistra would have done. What have we done? We have colored A, we have colored 

B, we have colored C, and we have not yet, colored D, or E. Now, if you look at this 

graph, there is a path going from S to B to D, which is 11 plus 2, 13. Now, that path is 

better than this path, which is of length 16. If I want my algorithm to find the optimal 

path, I cannot stop at this stage, which is why, we have this condition, till such a solution 

is fully refined, and such, I mean, the least cost solution is fully refined. Now, in this 

case, the least cost solution is this D and this C. So, let us say, without loss of generality, 

we pick D from here. Once we pick D from here, we will add this; we have already seen 

C. So, from D, you can go to G to C and to E. So, let us not worry about C and G. The 

cost from S to B is 5 and then, another 6 and then, 2 and we have this cost of 13. Now, 



we have added, in some sense to open, if you want to say; this path S, B, D, G to open, 

and we also have another path S, B, C, G to open, but none of them is at the head of the 

queue. Remember, that we will use something like a priority queue to increment this. 

Before we come to this G, we will exhaust this option of C, we will exhaust this option 

of D, and we will exhaust; yes, only these two options, you have to exhaust. This one, 

because this is lower cost, and this is lower cost; once we expand them or refine them, 

we will get more expensive solutions, and at that point, this G will become the least cost 

and then, we can terminate. 

So, this is the idea of Branch and Bound, essentially; that what do we mean by bound 

here? That the moment, when we expand this node with 13, we are going to bound; we 

are not going to be interested in this node with 19, or this node with 16, or this node with 

16, or this node with 23. Even though, they are not complete solutions, we know that if 

we are to refine them, there cost would be more than 613 here, and we have found this 

complete solution of paths cost 13 and the partial solution are of higher cost. Therefore, I 

can terminate at this stage. So, at the moment, when you pick the goal node or the path to 

the goal node, you can terminate. 

Let us look at another example, which is that traveling salesman problem, which we are 

so interested in, but before I do that, I want to ask a question, a few. I used a term 

estimated cost here, and when I say estimated cost, I mean the estimated cost of the full 

solution; not the partial solution. Here, we are working only with partial solution. So, 

when you say the cost of this path is 12, we mean that to go from S to A and A to D is 

12. It is not telling you how much it would cost through, if you went to the goal, along 

with this path. Now, I am talking about that; that instead of using this exact known cost 

of partials solutions, let us work with estimated cost of full solutions. 

Let us say, the estimated cost of any solution is C, and the actual cost of the same 

solution, and by actual cost, I mean, if I want to refine that solution completely, let me 

use the term; C star. The question that I want to ask is the mechanism that I used for 

estimation; it can do three things. One is, it can give me a perfect estimate, in which case, 

this would be; I would use an equality sign C equal to C star, but that is only a wishful 

hope, that you will find an estimate, which is perfect. So, let us hope that, let us say, that 

we cannot find an estimate, which is perfect, which leaves us two choices; either greater 

than or less than. So, we have eliminated that choice, because we have granted that we 



will never find such an estimate. Now, if I had a choice between an estimating function, 

which underestimates a cost, and a choice with a different estimation function, which 

over estimates the cost. So, let say C 1 and C 2 are such functions. Let us say, C 1 is less 

than C star, and C 2 is less than, is greater than C star; always greater then C star; which 

one, should I use? In other words, while devising an estimating function, what property 

should I take care to satisfy? Should I use C 1 or should I use C 2? How many people 

here, feel it is C 2, and how many feel, it is C 1? The rest are undecided or not awake. 

Anyway, just keep this in mind, I will ask this question in a little while again, essentially. 

Now, let us spend a little bit of time on the travelling salesman problem, again. This 

time, we are looking for an exact solution; even though it is NP hard problem. We want 

to look at methods, which will give us exact solutions. Maybe, we cannot solve very big 

problems, but at least, for the smaller problems, we want that, essentially. 
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We look at something called refinement search. By refinement search, I mean the 

following; that consider the set of all possible tours, that will be the root node of our 

search three, the set of all possible tours, and then by some operator, I will partition the 

set into smaller sets, essentially. What is an operator? One operator could be the 

choosing an edge, for example. Then, in the process, I want to refine so, essentially. I 

also want to talk about estimated cost. So, one thing that while I draw a small example, 

you should think about is; given a problem, which means given a set of cities, and the 

cost of edges between those cities; how can you estimate the cost of a tour? In other 



words, can you find a lower bound of a tour, or maybe, if you are interested, can you find 

a upper bound of a tour; any tour? Or in other words, all tours are going to be greater 

than some lower bound; can we find such a lower bound? So, let me write a small 

example. Let us say, we have these five cities; Chennai, Bangalore, Hyderabad, Bombay 

and Delhi and. So, Chennai, Bangalore, Hyderabad, Mumbai; I should say, otherwise, 

there is always a danger; and Delhi. So, I need the edge cost between these cities. So, I 

am just drawing the edge matrix to capture those costs. So, these are 0s; the diagonal 

elements, because you are already in that city. Let us take some simple values. Let us 

say, between Chennai and Bangalore, the cost is 300 Kilometers; between Chennai and 

Hyderabad, it is 600 Kilometers; Chennai and Mumbai; it is, let us say, 1000 Kilometers, 

and Delhi is 2000 Kilometers. These are not correct figures, but there was a list. So, 

given these figures, can you find an estimated cost? I am asking you a specific question 

now; can you find a lower bound on the tour cost; which means that no tour can be 

cheaper than that cost. 

Let us put in some more values. Let us say, Bangalore and Hyderabad, let us say, 500; 

Bangalore and Mumbai is, let us say, 900; and Delhi is the farthest from everything. So, 

let us say, 2100 here, and 1500 here, and just some random, a close to random figures, 

and that leaves me with, between Mumbai and Hyderabad, let us say, that is 700. So, this 

is my matrix given to me; edge cost, and I want find the solution for the travelling 

salesman. My refinement search is going to do the following; that my root is going to be 

S; I will just call it S, and this is a set of all tours. What I am asking you is that for this 

node S or route S, which consist of all possible tours; what would be a cost that I would 

want to associate with that, which is the lowest possible cost that I can think of, 

essentially? Now obviously, you can say 0 is a lower bound, because definitely, every 

node, every tour will have cost greater than 0, but I am not interested in such a trivial 

lower bound. You can even say 300 is a lower bound, for example, but I am not 

interested in that. The reason for that is that, if I am going to do this Branch and Bound, I 

am interested in excluding candidates from my search space, and I can only exclude 

candidates, if their estimated cost is higher than my actual cost of some known solutions. 

To see an example here, if I want to expand this known solution, is cost 13, this 

estimated cost is 19. Now, this 19 is actually, the actual cost of going from S to A to E, 

but I can be overly optimistic and say, that is actually, the estimated cost of going to G 

from this path, essentially. The rest of the edges, I have cost 0; I can be overly optimistic 



about that. So, I can treat this actual cost of going to E, as estimated cost of going to G, 

via this path, essentially, but even, if that were to be the case, I know that the estimated 

cost is 19, and this actual cost is 13, and this is only going to increase as I refine the 

solution further. 

So, it can never become better than 13. So, I do not really need to refine that. I am going 

to; that is a bounding, I mean. I am just not looking at that, this thing. So, for such 

reasons, that I should be able to exclude bad candidates, as quickly as possible, I need 

estimated costs, which are as high as possible. So, as I said, you can always give me 0 as 

an estimated cost, or 300 as an estimated cost, but I am not interested in that, because 

they will not exclude solutions from a search space, essentially. You were saying 

something.  

Student: (( )) 

Prof: Yes. But I am not interested in higher bounds, so much. So, let us talk about lower 

bounds, essentially.  

Student: Lower shortest four edges. 

Prof: Lower shortest four edges; why not five? 

Student: (( )) 

Prof: Yes, but that would give me what; 300 plus 500, even assuming that I will look at 

only the diagonal matrix, I mean, triangular matrix; 300 plus 500 plus 600 plus 700. That 

would, you know, something like that, essentially. 

But, all my desire is to get as high an estimate as possible. So, the general idea is that I 

want as high an estimate as possible, but it is should be a lower bound, essentially; these 

two things, remember. So, there are, of course, I know that there are more than one way 

of doing it. So, we will just use one method here, which is that we will take the lowest 

two elements from every row, essentially. So, I will take 300 plus 600 from here. I will 

get 900 from this row. I will take 300 plus 500; I will get 800 from this row. Then, these 

two, which will give me 1100 from this row; 7 plus 9 is 1600 from this row, and 12 plus 

15, which is 2700 from this row. I will sum them up and divide the answer by 2. 



What is the rationale behind this; taking two lowest from every row? Yes. In a tour, 

every city will have two edges; one incoming and one outgoing, if you can distinguish 

between them. We are sort of being optimistic here, and saying that the two edges are the 

lowest cost to edges, because they cannot be better than that. So, if the lowest cost two 

edges are taken from each row and we sum that up, and divide by 2, because we do not 

want 10 edges; we want only 5 edges; we will get an estimate of the lower bound 

essentially. So, we follow this similar, this high level algorithm, we follow; refine the 

cheapest cost partial solution. In this case, we have only one at this moment. So, we will 

refine that, till the solution is fully refined. Let us say, we use some heuristic and we say, 

that we will add a cheap edge to the tour, essentially. So, the cheap edge here is, for 

example; between Chennai and Bangalore. 
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So, I have now, I will just draw it a little bit this side, because I want to write things here. 

I have two successors. This one, I will call C B, and the other, I will call C B bar. By 

this, I mean, I have portioned the whole set into two subsets; in one subset, which I call 

C B; the Chennai Bangalore segment will always be present; and in the other subset, it 

will always be absent, essentially. 

Now, I want estimated cost of these two. So, for every node, my search three, I need an 

estimated cost, exactly like, what is happening here. Now, you can see that, let me write 

it here; C B here, C B bar; let me write here, and C b here. Now, you can see that C B 



will not change, because I am going to include this lowest cost edge, I have already done 

that in my original estimate. So, whatever was my original estimate, will continue there, 

essentially. In that case, I can just copy these figures from here, but for C B bar, I cannot 

do that; why? Because I have excluded the edge C B from that set, essentially. So, I have 

to find revise. I cannot choose 300, because in this, that node C, this thing; can 

somebody tell me the value for this? I think so, we can use that. Divided by 2? 3550. So, 

this cost is 3550, and this cost here, it will also be 3550. This cost is not going to be that, 

because I cannot use this 300. I have to use the next two edges, which means 600 and 

1000, which means, this will go up by 700. So, I will write plus 700 here. I cannot use 

this here. So, I have to use this. Instead of 900, it becomes 1600, which is plus 700 here. 

Instead of 800, this becomes 1400, which is plus 600. The rest will not change, because I 

am not using that edge here, essentially. 

So, that is 1300, and when I divide by 2, I will get 650. So, this will be plus 650. So, I 

have a way of devising edges. What have I done? I have said that; so, this is Chennai, 

then, this is Bangalore; this is Hyderabad; on some scale, this is Mumbai; this is Delhi; I 

have said I am going to add this edge, and that is my set C B. So, all towards in which, 

this segment is there, I will call C B, and all towards in which, this segment is not there, I 

will call C B prime. Out of these, C B seems to be better. So, I will refine that. Let us 

say, I follow this heuristic. It is not necessary to follow this heuristic, but let us say, we 

will follow this heuristic, which means, always pick the cheapest available edge. It is like 

a DD algorithm, which tries to build cheapest tour, essentially. So, I look around this 

graph here, and the cheapest tour, I can find next is 500, which is between Hyderabad 

and Bangalore. So, what am I doing now? I am saying, add this edge, and I am refining 

this graph. So, one side will be called Hyderabad and Bangalore, and the other side 

would be called its compliment. So, the way to interpret this node is that, this edge H B 

prime node is, that all those tours, which contain the Bangalore Chennai segment, but 

exclude the Hyderabad Bangalore segment, and the way to interpret this node is, all 

those tours, which contain both the Chennai Bangalore, and the Hyderabad Bangalore 

segment, essentially. 

So, that is what I have drawn here. All tours, which have these two edges is this. Now, 

let us find an estimate for this. How do I do this? At this point, I should mention, before 

we do this. This process of computing the estimates is computationally, intensive 



process, in the sense, you have to spend some computation time, looking at this matrix 

and doing something. But there is also that you can do a certain amount of reasoning; 

something, that we would call constraint propagation, in the process of doing estimates. 

Let me illustrate that. Let us, first of all, because we have chosen the cheapest edge, then 

for this nod H B, I am anyway going to include both these. So, it is not going to affect 

my cost. So, the cost for H B is not going to change. You should just convince yourself 

that is going to be 3550 also, but this cost for H B prime; that is going to change. So, let 

us look at the changes, essentially. So, one thing is, of course, that you cannot use this 

Hyderabad Bangalore link, which is; this is Hyderabad; this is Bangalore. So, this link, I 

cannot use, just as we did first C B prime, for this nod also, we cannot use this link. So, 

which means now, this will become 300 plus 900, which is 1200. Originally, I had 800, 

now it is 1200. So, if you compare with this as a basis, I get plus 400 here. 

Likewise, here, I cannot choose this 500. So, it becomes 600 plus 700. Originally, it was 

1100; now, it is 1300. So, it is plus 100 here. So, I am just adding the incremental cost. 

Only these two rows will change; plus 200, but coming back to this, how; see, we have 

this desire, and we will see this in the next class, that having an accurate estimate helps, 

or if not in the next class, then, the next class after that; that the higher the estimate, the 

better for us. Intuitively, it means that the higher my estimate is, the more likely it is that 

it will get excluded from a search space, essentially; if I find a cheaper solution. Now, if 

you look at the estimate for this, I have this Chennai Hyderabad section; Chennai 

Hyderabad is this one; this 600, and this 600. Now, if I do a little bit of reasoning, how 

constraint propagation, and what is the constraint I am propagating is, that I want to find 

the complete tour, which means that I cannot have a cycle, which is smaller than length 

5, in this example. I cannot have a cycle of length C. So, if I am going to have that set H 

B, which includes, actually, it means that this estimate is not correct, even though, I 

wrote it there. Why is it not correct? Because I cannot include in my estimate, this 

Hyderabad Chennai sector, why, because I have already included C B in that path, and 

then, in this path. So, I am talking of this node here, and I am saying that even, the 

estimate of this node will go up. The reason, why that will go up is that having included 

C B, and have having included H B, I am forced to exclude H C from there, because 

otherwise, I would have a cycle of length C, which means I cannot use this value for 

computing this; for this one; for computing the estimate of that node, I cannot use this 

value, 600. Instead, I will be forced to use the next value, which is 300 plus 1000, which 



has become 1300, essentially, which is, of course, more reasoning than what I did so far. 

What I did so far was, if I am including an edge, I cannot count at, when I am using those 

bar kind of node, essentially, because they are excluded, sorry, if I am excluding an edge, 

then I cannot count them. 

But now, we see that there is certain propagation, which takes place that if I am 

including this edge, and if I am including this edge; I cannot count this edge. So, let me 

just draw a zigzag line to say, that I cannot count that line. Why, because then, I would 

have a cycle. I can go to more extent to do more reasoning, to get better estimates, and 

what do I mean by better estimates? Higher estimates, which means, if you cannot 

include something, then do not include it. That something, in this example, is 600 here, 

which is a low cost in this row, also in this row, but I cannot use it in my estimates. So, I 

must use something else, which will give me a higher estimate. Another edge here, that I 

cannot include, after I have included Bangalore Chennai and Bangalore Hyderabad, there 

are two more edges that I cannot add, because I want a tour, and the tour has this 

property; that every city is visited, exactly once, which implies that every city has 

exactly, two edges incident on it. I already have Bangalore, which has two edges incident 

on it in this set. So, I cannot have this set. Neither, can I have this set. 

So, you can see that problem solving is does not necessarily, one prompt strategy, that 

you just do search and only search, essentially. Later on, we will see that it is often 

useful to combine search with reasoning, essentially; some amount of reasoning and 

some amount of search, and in the process you will try to cut down on the search space, 

more and more, essentially. What do we gain by excluding this? We get more accurate 

estimates. For this tour called H B, which is the set of all tours, which include; now, we 

can describe it more specifically, saying that H B stands for the set of all tours, which 

include that path here, that C B H, the H B H and which excludes, H C D B and M C, 

essentially. So, already we have narrowed down our choices and made better estimates. 

So, this is the same thing that we were doing here; refining the least cost partial solution. 

We started with 3550 and then, we got two solutions; one was 3550, and the other one 

was a bit more than that. We refine this; we get these two solutions. We have not 

computed the actual cost for this, but once we do that, we will refine them. At some 

point, we will get a complete solution. For example, in this problem, if you want to add 

one more edge, let us say, this edge; Hyderabad Mumbai. Then, actually, you have 



solved the problem, completely, because then, after that, you do not have any more 

choices left. If you are going to include these three edges, then you have to visit Delhi 

once. Once you have to visit Delhi from Mumbai, and once from Chennai. So, the rest 

will be four, essentially. 

So, after we have done the search, we have found a complete tour. After we added this 

search; below H B, if we add M H, and if this node M H, which includes these three 

edges, happens to be the lowest cost node in my search space. Then, I can terminate. 

That is the shortest path. So, you must convince yourself, that this termination criterion is 

sound. By that, I mean that it will guarantee an optimal solution, essentially. One of the 

reasons behind that is, that I have said that we are going to use lower bounding estimates 

for estimating the cost of a solution. 

You can see that there is some similarity of Branch and Bound with best first search, 

essentially. You can view best first search as doing Branch and Bound, with the 

condition that all edge cost are equal, essentially. That will force the; if all edge cost are 

equal, then you will just go down level by level, because the first level; the cost is 1, the 

second level; the cost is 2, third level; the cost is 3, and so on and so forth. So, depth first 

search is a special case of Branch and Bound where, all the edge cost are equal. When 

the edge cost are not equal, then Branch and Bound is a specific specialization of best 

first search, sorry, it is a generalization of Depth first search. So, you have to convince 

yourself that this will give you an optimal solution, but it does not have this. Of course, I 

said we are going to use a heuristic that uses a minimum cost solution, but it does not 

have a sense of direction, essentially. 
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So, let me illustrate that with a very small example, that if you are doing this city map 

kind of a thing, and if this is your start node and this is the map that you are looking at, 

and this, let us say, this is to scale, which means a length of the edge, that I am drawing 

is actually, the length of the edge. So, let us say, you have some such place. You add this 

start node and then, of course, there is one node here, let us say and then, some nodes 

here, and let us say, this happens to be a goal node. What will Branch and Bound do? 

What is the behavior that Branch and Bound will exhibit? It will explore all this part of 

the graph, because that is what its mandate is; extend the cheapest partial solution. All 

the cheapest solutions are on this part of the graph. So, it will explore this; it will explore 

this; it will explore this; and all possible combinations, which of course, has an 

intelligent view or you would see is not a very bright thing to do, essentially.  

It will guarantee eventually, it will find me the optimal solution. For example, if there is 

another path from here, which goes like this, which is longer; it will find me the shortest 

path, but after doing a lot of unnecessary and useless search, in this part of the map, 

essentially. It does not have a sense of direction. We are focused on this part, finding 

optimal solutions, and in the process, we have forgotten about this part; finding solutions 

faster. So, in the next class, we will combine these two together. We will see that how we 

can combine Branch and Bound with, this was best first, if you remember; best first 

search. 



We will introduce a heuristic function back again, and try to use this diastase frame of 

working on a graph to look at an algorithm, which is a very well known algorithm called 

A star algorithm. So, I will stop here and we will take this A star algorithm, up in the 

next class. 

 


