
Artificial Intelligence 

Prof. Deepak Khemani 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Lecture - 12 

TSP Greedy Methods 

 

So, you were looking at optimization. And remember that we came to optimization from 

state space search. 

(Refer Slide Time: 00:20) 

 

And the way with this was that, we looked at the heuristic function. That was used in 

best for search. And said that this, defines at again over which we use an algorithm 

called hill climbing, which is a local search algorithm. As the first, a global algorithm 

which best first search was, which means at the algorithm looks only at it is 

neighborhood. Immediate neighborhood in the state, or in the solutions space and moves 

to one of them especially. 

And then, we saw that local search algorithms can get stuck in local maxima, or local 

minimize is the case may be. And so the theme for our said this movement, is escaping 

from those minima. That, how can we improve upon hill climbing. So, what does hill 



climbing do? Hill climbing does, what we will call as exploitation. And exploitation of 

the heuristic function essentially, that it basically follows the heuristic function. 

It looks in around it is neighborhood. And wherever the heuristic function is getting, a 

maximum increase. Or in other words, in the direction of the steepest gradient, it makes 

one move. And then, repeats it process still it cannot find the better neighbor. And in 

escaping local maxima, we said that one of the first algorithm that we looked at; or in 

fact, the only algorithm that we have seen is variable neighborhood descent. 

And what this algorithm did was that, it tried out a variety of neighborhood functions. 

So, for us the neighborhood functions is given by the MoveGen function. And we also 

said that, we are moving from state space to solution space search, which means that we 

are perturbing candidate solutions to generate new solutions. And we saw the example 

with said, that you can flip 1 bit or you can flip 2 bits or up to 2 bits or 3 bits and so on. 

You can generate a variety of neighborhood functions. And what neighbor, variable 

neighborhood descent is that when it get stuck, it does a series of hill climbing's. And 

when it get stuck, at a local maxima or at a maxima it does not know, that is local or not. 

It increases the density of the neighborhood function and tries hill climbing, all over 

again essentially. So, we want to move, we want to look at different other approaches 

which will help us get around local maxima. 

So, in the process when we are talking of optimization, we will use the notion evaluation. 

So, this is just particular to the optimization community. So, but you must keep in mind 

that, we are talking about the same function; whether it is h of n or evolve of n. It is 

basically a value that you get, for a given candidate. And the task is to maximize, to find 

the candidate which has the maximum, this value. So, when heuristic functions, if you 

are thinking of heuristic as a distance, then you want to find them. 

State with the smallest distance, which is the goal state or if you have pause it, like 

within the block problem. That some heuristic function, which has the maximum value at 

the goal state, then you are maximizing essentially. So, instead of calling it heuristic 

function, we call it evolve function. But, the process is still the same that, we all want to 



find the note with the maximum value or the minimum value, the case may be. So, today 

let me introduce this. One of the most talked about problems in computer science, which 

is the tabling salesman problem. 

(Refer Slide Time: 05:17) 

 

I am sure, you are all familiar with it. So, I will just write the acrolein here. TSP stands 

for Travelling Salesman Problem. And it is one of the simplest problems to state and one 

of the hardest problems to solve this easily. So, a travelling salesman problem is 

basically, the motivation is set to be to help a travelling salesman, who has to visit many 

cities. Let us in one day or something like that. And come to his home city. And do the 

whole thing with some minimum cost, in some manner essentially. 

So, I suppose everyone is familiar with the TSP problem. We will say that, we have city 

1 to city n, n cities which we will also denote by 1 to n. Just has a short hand. Easier to 

refer to is essentially. So, there is n cities, 1 to n. And you have to go from one place to 

another essentially. one city to another, without visiting the same cities twice. Now, in 

practice off course, in some problems it may be necessary for you to visit the same city 

twice essentially. 

So, for example, if there is a small Ireland near the coastline, to go you go to that Ireland 



from one city. Let us say Chennai for example. And you come back to Chennai and then, 

go somewhere else, essentially. But, we will ignore all those problems. And we will 

assume that, the classical problem of visiting each city exactly once. Essentially is what 

we want to solve. Now, in practice a city network may not be completely connected. 

In the sense that, if it is a road network, you may have roads from some cities to other 

cities and so on and so forth. But, not for example a direct road from, let say here to 

Nagpur or something like that. But, we have indirect roads, in the sense. That may be, 

you go from here to Vijayawada. And from Vijayawada, you go Nagpur or something 

like that. But, in general it has been found that, it is easier to solve TSP when the graph, 

underline graph is completely connected. 

So, we will assume that, this is completely connected. And we can always convert a non-

connected graph to a completely connected graph. I adding new edges. And making sure 

those edges have very high weight. So, that they never figure in the solution actually. 

But, the solving process becomes easier. Now, TSP occurs in many practical problem. 

So, for example drilling circuit boards, if you want to manufacture circuit boards then, 

you have to drill many holes on that board. 

And if you think of each hole as a city then, you have to visit all these locations keep 

drilling holes, essentially. So, we have something like a TSP to solve them. And such 

problems have something like thousands of. So, it is not uncommon to have a problem 

with eight thousand holes to be drilled and think like that. And then, you can see that the 

complexity of the problems grows very quickly. So, what is the number of tours that we 

have. For, if you number of n cities, how many tours can we have for the n cities. 

So, we can have n factorial tours. And one of the notations that we will use for tour is, 

something like this. So, for example, if you have nine cities then, a tour could be 

something like 2 7 1 6 4 3 8 5 9. So, list city names or in this case city indexes or city 

numbers, gives you a candidate tour, essentially. So, this is a tour says that, you started 

cities 2 then, go to city 7, then go to city 1 then, go to city 6 and so on essentially. 

We can represent a tour in this session. And we can see that, we can honest choose the 



first number is n ways, the second one in and so on. And that is, how we get that number 

factorial n. But, many of these tours are duplicates of each other. In particular, if I rotate 

this number, if you think of this is a number, I start with 7 and 2 comes at this end. Then, 

it is a same tour essentially. Because, remember that in the travelling salesman problem, 

you have to come back to the same cities. 

So, after 9 we are going to come back with 2. So, I could started with 7 and return to 

here. I could start with 1 and return 27 here and that would be the same essentially. So, 

you should device this way n, because there are these n rotations that are possible. And 

in the addition, if I write it in the reverse order 9 5 8 3 4 6 1 7 2, then also we will 

assume it is the same tour. So, we will assume that the cost of going from city a to b is 

the same as the cost of going from city b to a. 

So, you have to divide further by 2. So, you have divide by 2 n. So, what we get is, n 

minus 1 factorial divided by 2. So, this is a number of distinct tours, which means say no 

2 tours are identical. Of course, in factors it may not be easy to recognize the tours, the 

distinct tours. So, we can say that we have about n factorial. The size of the space is end 

factorial, essentially. How bad is the factorial function? 

So, remember that we has said when we have talking about sat, we had said that a 100 

variable SAT problem has to raised to 100, the size of the space is 2. So, 100 variable 

SAT has 2 raised n, which we said was about 10 raised to 30. And we have in sought of 

talking about this large numbers, and say how big these numbers. We try to imagine how 

big these numbers, really or essentially. So, you must whenever you get time, look at this 

book call mathematical themes. 

A mathematical theme, which is by I keep talking about quite often. And one of the 

articles in that book is or one of the chapters in this book is, about how we cannot 

distinguish between large numbers. So, we cannot if I say 25 billion or if I say 25 

million, they basically appears same to you essentially. I mean in the sense, you do not 

have a sense for large number. Essentially, if I say that, it takes 10 is to 27 let say 

seconds. And if I say it takes 10 to 29 seconds, it sounds almost the same to us. 



But in fact, is of course, 10 is to 29 is 100 times 10 is to 27 and we sort of 10 to lose 

sense, of in essentially. So, we have seen the 10 raised to 30, extremely large numbers. 

And if you have to explore all of them, it would be billions of years essentially. But, 100 

variable TSP is about 10 raised to 157. So, TSP is much, the factorial function is much 

much much verse in terms of how fast it grows, has compare to the explanation function. 

So, the SAT problem is exponentially hard. In fact, it known to be n p completes. It for 

the first problem, for that was shown to be n p complete. TSP is verse an exponentially, 

it is factorial and factorial tends to go much much faster. And we can see that, the 100 

variable TSP has about 10 is to 157 possible different, possible to us. And that is the 

number, that we cannot even began to imagine essentially. So, as something to compare 

with, we can say how many fundamental particles. 

Let say as some level electrons for example, are there in this entire universe. Does 

anyone have an idea? How many particles are there in the universe, at some level of 

detail, essentially? 

Student: (Refer Time: 15:24) 

Yes. It is in similar, that somewhere 10 raise to 75, 10 raise to 80 depending on what 

level you looking at. So, the total number of particles in the universe is about 10 raise to 

80. See each of them was a super computer, examining billions of states per second. We 

would still need billions and billions of years. So, these are the very large numbers that, 

you have to tackle. And that is why, you cannot even hope to solve this completely. 

You cannot even hope to find them optimal solutions for something like, TSP. And in 

that sense, many people call TSP has the holy grail of computer science that, how to find 

good algorithms to solve TSP is a great motivator, essentially. Now, one thing that we 

have talking about so what is the problem? The problem is that we have to find the tours, 

the cost of the tour is minimal, essentially. That is the problem essentially. 

Now, the cost of course depends on the individual distances between. So, distance city 

distance from i to j, what kind of a function are we using for distance function, much 



depends upon that as well. If we assume that, the distance function is arbitrary then, of 

course the problem is completely hard to solve essentially. Then, we have to go back this 

thing. But, sometimes the problems are not so arbitrary. In the sense, distances are not 

necessarily arbitrarily. 

So, one of course example is, simple example is the Euclidean distance. So, if the 

distance is the Euclidean distance. So, for example, if you have manufacturing a circuit 

board then, you can think of the distances of the Euclidean distance. And then, at least 

indubitably you can imagine that, you will be able to find an optimal solution. So, 

supposing it was the great, and you have to drill many holes in the grid. 

Then, you can at least hope to say that, I will find a good solution, if not necessarily an 

optimal solutions. Now, in terms of that for, so Euclidean distance we will call it as 

Euclidean TSP. If this is the Euclidean distance, as the distance measure it turns out. 

That if the problem is the Euclidean TSP then, you can solve it in polynomial time, not 

optimally but, the community calls approximate solutions. 

So, we can find approximate solutions, in polynomial time and you can specify it, what 

degree it is approximate. So, it is something like 1 plus 1, 1 upon c or something like that 

times optimal cost. So, in polynomial time you can find very good solutions and you can 

put a bound on, how bad they can be essentially apart. From Euclidean distance, we can 

say that the distance should satisfy, what we call as a triangular inequality which is the 

weaker condition. 

Then, Euclidean distance also satisfies triangle inequality. But, what triangle inequality 

says that, if you want to imagine a triangle between three cities. Then, the distance 

between of the length of one side is smaller than the sum of the lengths of the other two 

sides. So, that is the, this is known as the triangular inequality. And if the distance 

function satisfies the triangular inequality then, also it is relatively easier to solve. 

Easier to solve meaning, you can find good solutions faster. You cannot solve it 

optimally, essentially. Then, we have something call the geographic TSP. So, imagine 

that you are one of those globe floating executives, who flies from here to Delhi and 



from Delhi to Tehran and Tehran to Budapest and so on and so far. Going all over the 

world then, your domain is a spherical domain. The earth is the sphere as we all know. 

Now, at least and distance is do not necessarily, we are not necessarily we cannot talk of 

Euclidean distance. 

So, we have to talk about distance on the curved surface. So, that is the slightly different 

problem. People have try to solve these kind of problems. Now, interestingly you must 

look up for this website, it is called TSP LIB. So, I do not remember the address but, you 

must look up for TSP LIB website. It is a website, maintained in one of the German 

universities. And it is a collection of very interesting TSP problems. 

So, you know there is a problem of all European cities. For example, and some circuit 

board problems and things like that. And more interestingly, it has got problems in which 

somebody has taken the travel to find the optimal solution. If you have a problem of 

15000 cities for with the optimal solution is known then, you can write some algorithm 

that will be used to calculate them when it exploring. 

And compare your algorithm with one of those with the actual optimal solution. So, this 

has the optimal solutions. So, there are examples big examples, which their optimal 

solutions given. And so you could use that as a benchmark, to see how good your 

algorithm is essentially. And we probably give you one exercise, along those lines 

essentially. Some of those optimal solutions, see the only way we can guarantee an 

optimal solution and we will study optimal solutions, sub it later. 

Is to say that, I mean this sound like a circular argument but, to say that there is no better 

solution, which is possible essentially. And if you then, guarantee that there is no better 

solution then, you will have an optimal solution. And it is taken them, if you look at 

some of the references. For example, this book (Refer Slide Time: 21:49) Something, 

like thousands of computing years of computing time. 

So, as they are many machines working in parallel. And then, they compute this 

exhaustibly anumulating all TSP and finding optimal solutions. So, you must go and look 

at this site, which will give you optimal solutions essentially. So, today let us spent a 



little bit of time. So, I am brought TSP here, because one of the things you want to do is 

look at this variable neighborhood descent again. 

From and see how TSP can be solved using this essentially. So, basically the idea being 

that, what are the different neighborhood functions that we can construct? But, before we 

come to that, so remember that we had said that, there are two ways of solving problems. 

(Refer Slide Time: 22:38) 

 

One is constructive and the other is perturbative. So, in constructive method we construct 

a solution, bit by bit. And that is the whole state space search that we started with. In 

perturbative methods, we take a candidate solution and perturbative to look at another 

candidate solution. So, we did this for SAT. For example, we said that any bits string is a 

candidate solution. Then, you can change some number of bits, which is the perturbation 

you have doing. 

And look at another solution but, it also constructs a solution edge by edge, if you want 

to say. So, let us first look at some algorithm. So, constructive solving the TSP with 

constructive methods and then, we will come to Perturbative methods in which case. We 

will look at variable neighborhood descent. And whatever other algorithm, that we are 

going to look at after that. So, for example given a set of cities. So, let us assume that we 



have working in this Euclidean space. 

So, there are actual distance is the distance, what kind of algorithm can you think of. You 

must have tried something some time. So, let simplest constructive method is to start. 

Try to stimulate what you would do, if you are doing this in the real world, so to speak. 

So, you start the some city, let say this one. And then, look at it is neighborhood. Now, 

remember this entire set is a neighborhood because, assume that our graph is completely 

connected it, essentially in this case. 

But, when we come to perturbative methods, we will look at smaller neighborhoods 

where you know, all those in this the neighborhood is different. In sense that, it is not a 

candidate solution but, it is a neighboring city. So, you will go to the city which is 

nearest to you it. So, let us say you go from here to here. And then, you repeat this 

process. You go to the nearest city, you go from here to here, when you go I mean, it 

looks like this is the nearest and you will get some solution and solve. 

So, this is one simple heuristic algorithm. It is a greedy algorithm. It says, started some 

city and go to the nearest neighbor. Then, from there go to the nearest neighbor and so on 

and so far, essentially. Now, obviously in some situations it will give you a very good 

solution, if not the optimal solution. But, you can imagine that what will happen with 

situations, where I have a city somewhere here. If I have a city somewhere there, what 

will my algorithm do, ideally what should it do? 

It should go from here to that and come back here and then resume its thing. But, it will 

not do that because, my algorithm says go to nearest neighbor. So, I will go from here to 

then, I will go from here to here, go from here to here then here, here, here to here, here 

to here. Then I will go there and then I will come back here. So, obviously you can this is 

just to illustrate, that this algorithm will not always give you a optimal solution. 

But, it will give you depending on what kind of problem it is, it will give you reasonably 

a good solution, essentially. Now, a simple variation to this is, that instead of thinking 

going like this, you can think of extending you towards. So, at the any given time you 

have a partial toward it. So, let say we have done only, till this much. And instead of 



saying that, this is a one directional thing you can say that, you can think of it is going in 

both directions. 

And then, you can say you can extend at either end of the tour. Instead of saying that, 

only extend that where you verse trying to stimulate a physical person moving around. 

You can say which ever end of the tour has a closer city extend, that towards end. That is 

as a simple extension of that essentially. So, I am now how do you talk about cities like 

this, which are far away from the rest essentially. So, one algorithm, so I am not writing 

these things but, any of you look at any text book on TSP, they will talk about these 

algorithm. 

You could say that, I splice this. So, in the science that supposing I have already 

constructive this toward, which is not a very good toward but, I have constructed this and 

I only left with that city. Instead of going from this place to this place but, I will do is 

that, I will find out which point in the tour is closes to this city. And connects that with 

this and then break the stage and connect this with this. So, this will give you some 

improvement essentially. 

So, that is but obviously, every time we do that, the complexity increases. Because, 

notice now that if you write a general algorithm for that, you will say that for every new 

point in the city, which is the closes point in the tour. So, you have to inspect in the 

whole toward. So, complexity will go by a factor of n in that case. So, this is one set of 

constructive algorithms for solving the TSP. Another popular thing, which is known a 

greedy heuristic says that, you sort the edges. 

Maintain a sorted set of edges and work with edges instead of working with cities 

essentially. So, you can now imagine what the algorithm is. It says that, you have all the 

edges that are available to you in this thing. So, pick the shortest edge that is available to 

you and add that. So, in this example for example, it could be this one. So, this could be 

my first says that I add, because that is the shortest edge. Then, the next shorted could be 

this one. Then, it could be this one and so on and so far. 

So, this is a different algorithm. It is shorting the edges. So, you short them once and 



then pick the shortest edges. The hope is that, you will pick all the small edges because, 

for the optimal solution the more the number of shorter edges, the more likely it is 

optimal essentially. Obviously, when you are doing this greedy heuristic, you have to be 

careful that. You do not have a loop on the way essentially. 

So, if you have connect a some number of cities and if the next shortest edge is forming a 

shorter loop then, you should not take the edges essentially. Used that one thing you 

should know. Then, there is another heuristic, call the savings heuristic. And all these 

have you know, available in many books. The savings heuristic says that, first construct 

n minus 1 tours of length 2. So, let me illustrate this with this example. 

(Refer Slide Time: 30:58) 

 

You take some arbitrary city and you construct tours with every other city. So, I will just 

take a smaller example. So, there is some city and from there you constructing this. So, 

there are, in this example there are five cities. So, I have constructed four tours of length 

two. And then, you merge to tours. So, how can you merge two tours? So, for example, I 

can say that, I will merge this two let most two tours. So, I will take this one from here. 

I will take this one from here. And I will delete this edge and I will delete this edge and I 

will add in a edge, here new edge. So, the only question is which two tours should I 



merge and that is where the name comes from savings heuristic. It says, select that pair 

of tours in which you get the maximum savings. What is the savings? That, your length 

you had four edges in this to start with. So, you add at the lengths. So, l 1 l 2 l 3 l 4 and 

now after merging, you have l 1 l 4 and a new one, that is call it l 5. 

How much is the saving, how much is l 1 l 4 l 5 better than l 1 l 2 l 3 l 4. Choose that 

combination, which gives you the maximum savings essentially. So, now that you have 

merge these two. Then, you could merge this larger tour, with this third one. For 

example, so you could delete this edge and add this edge. And add this one and so on and 

so far. We keep merging. So, in the n minus 2 merge operations you will finally, get the 

tour essentially. 

Again, it is heuristic algorithm. Not guarantee to give you an optimal solution but, in 

general all these algorithms give you a reasonably good solution for Euclidean TSP, at 

least essentially. So, let us now go to the perturbative approach. What does perturbative 

approach says? That it, you take some candidate and generate it is neighborhood 

essentially. The which is, kind of different from this. Here you are constructing the tours 

gradually. 

Here you are saying, I have one tour given to be and I am going to produce a set up 

neighborhood tours and choose one of the essentially. Exactly like, what we did in SAT. 

I have a candidate solution. I will perturb it by changing some number of bits, to get new 

solutions and move to that new solution. This was like hill climbing like algorithm, we 

are approaching now. In this, the question is what are the neighborhood functions at we 

can talk about here. 

Can we think of that? So, given that tour for example, 2 7 1 6 4 3 8 5 9. How can I 

generate a neighborhood around? What is the property that a tour by satisfy? And if 

basically should be a permutation of those n numbers essentially. So, essentially you 

want to generate some new permutations and explore one of them essentially. 

Student: (Refer Time: 35:04) 



Swapping adjacent numbers, would give you a new tours. So, instead of saying this I, so 

I can pick two, any place and swap two numbers. So, for example, I can replace 1 6 by 6 

1, that is what you have saying. So, that is one. So, you can imagine how many such 

moves are possible. You can make n minus 1 swaps here. So, this will have n minus 1 

neighbors essentially. So, either the first two are the second two are the third like in line 

it. 

So, you can journalize that to something which we call as a 2 city exchange. And what 

that says is that, take any two cities in the tour and exchange their positions. So, this is a 

particular case of that, it says that take two adjacent numbers and exchange that. This is 

the operator says, the take any two cities and generate essentially. So, how many 

neighbors will this have. I can take n c 2. Two cities in n c 2 ways and for each way that 

I pick, there is only one neighbor I would be generate because, I can only exchange their 

positions essentially. 

So, I will have n c 2 neighbors essentially. Or I can have 3 city exchange, what this says 

is that, takeout any three cities from the tours. And put them back in some different order 

essentially. So, I can pick them in n c 3 ways and then I can put them back in 3 factorial 

minus 1 because, 1 I do not want to put it back in the same order. So, 3 factorial minus 1 

order. So, I will generate that many these things. So, what is this two city exchange is 

doing? 

If I have a tour like this then, if I am going to exchange this one with this one for 

example. Now, what it means is that, I was going in this order. But, now I am going to 

go, instead of this I am going to come here. And from here, I am going to go there. So, 

this will go away. Then, instead of coming here I will go like this. If you must visualize 

this, this what happening when I am exchanging this city with this city. 

Originally, it was a circular looking tour. Now, because I will exchange the position of 

this two cities from here, I am going to go here, from here I am going to go there. And 

then, continue here. And then, this something finger will have essentially. Now, it turns 

out that city exchanges are not the best way of thinking about things. But, edge 

exchanges are end of the easier to think about essentially. 



So, for example, I have two edge exchanges. It says that, remove some two edges from 

here tour and insert two new edges, instead of that. So, let us this see, what this means? 

Supposing, I have tour like this or let us see I have I am just trying them in the circle 

because, this easier to this in factors. Of course, it is going to be sought of distributed 

over some space. I mean cities are never arrange in nice circle edges but, it is easier from 

me essentially. 

So, one of the thing that we would want to do is that, you know this Euclidean TSP is to 

generate random problems, which means take a two dimensional space. Let us say a 

computers, monitors screen and randomly place it there. And then, say find the optimal 

tour for that essentially. Now, if I have a tour like this. So, ideally if I have a tour which 

is something like this, you can see that I have two very long edges in this tour essentially. 

If I could somehow remove them and replace them, into two shorter edges, keeping it as 

a complete tour, I can transform this problem in to another problem in which, instead of 

these edge and instead of this edge, I add this edge. I add this edge and I add this edge. 

So, whatever them, I have deleted two edges from my tour. And replaced it with two 

more edges and there is only one way I can do that essentially. 

If I delete any two edges, I have only one new tour that I can create, in this example. 

How will I do this, two city exchange? So, let us say we have that tour. So, something 

like that, 2 7 6 5. Supposing, I have representation like this, how can I implement two 

edge exchange? So, anyways, so it is not comes. So, once you know the answer, it is 

simple. Essentially, you take a sub slink here and reverse the sub slink. 

So, 2 7 4 5 6 1 3 9 8, so let us see whether it is really doing, what we are saying it is 

doing. So, which other two edges that I have removed here? The edge that I have 

removed is 1 from 7 to 6 and 4 to 1. The other edges remain the same because, from. So, 

here instead of going from 7 to 6, I am going from 7 to 4 and 4 is still connect to 5. So, 

maybe I should draw this. This is called as cities. So, I go from 2 to 7, 7 to 6, 6 to 5, 5 to 

4, 4 to 1, 1 to 3, 3 to 9, 9 to 8 and 8 back to 2. 

That is the last step. This is the tour that I started with. Now, I am saying just rotate this 



sub slink, 6 5 4 and that gives me, this tour 2 7 4. So, let us follow that tour from 2, I am 

going to 7, again from 7 I am going to 4, 4 I am going to 5 is part of the same tour, 

notice. From 5 I am going to 6, from 6 I am going to 1, from 1 I am going to 3, which is 

also part of the whole 2. Then, from 3 I am going to 9, 9 I am going to 8 essentially. 

So, everything all the edges except for this 1 to 4 edge and 7 to 6 has been replaced. So, I 

have taken up this edge 7 to 6 and 1 to 4. And replace them with this edges, which goes 

from 7 to 4, which is this edge and which goes from 1 to 6, 6 to 1 in this new edge. So, 

this is this one and this one is new edges, that I will introduced. So, rotating a sub slink 

will effectively do a two edge exchange for use essentially. 

Why this intuitively more appealing than city exchange? I hope it is intuitively more 

appealing than the city exchange because, it is the edges it is the edge cost, bit adds up to 

the total cost of the solution. So, what would you ideally want to do is, to inspect your 

solution. And off course, between every two cities there is an edge cost. Pick those 

edges, which seem to be very high cost. And replace them essentially. 

So, the original example that I have drawn, which was like you go some tour like this. 

So, if you have some tour like this, where you are going like this then, these two are very 

long edges. If I remove them and replace them with this, I will get a shorter tour. So, in 

that sense manipulating edges is more appealing because, you can at least apply the slink 

of removing very long edges essentially. So, 2 edge exchanges just one example. You 

can look at 3 edge exchange. 



(Refer Slide Time: 45:10) 

 

So, 3 edge exchange shows, you must compute how many neighbors are there are and so 

on. So, you can pick two edges in n minus 1 c 2 ways and then you will get n minus 1 c 2 

successes. In 3 edge exchange let say, this is the problem. This is the original tour given 

to me and I am removing this three edges. So, one is this one, one is this one and one is 

this one. And now, we can see that we can put them back in different ways. 

So, one way you can put them back is, that you can connect this to this, from here. So, 

you must be careful not to form a cycle. So, from here I cannot go to this. So, that not 

allowed. So, from here I can go to, let us it is this. And here I can to this. No, something 

is wrong. Now, here there are 3. So, I cannot do this. So, I can put this here. Then, from 

here I can go to this. And from there, I can go to this because, I have a new tours 

essentially. 

So, it turns out that there are four different ways to put them back. So, let us try one more 

and I will leave the other two is an exercise for you. So, you understand this notation. It 

is a kind of shorthand. This is some tour with some n cities but, we have drawn only six 

cities, representing those six, three edges that we are going to remove. So, this edge we 

are removing, this edge we are removing and this edge we are removing. 



Less of the tour remains the same but, we have puttng back three edges in slightly 

different place. So, instead of bliss now I can instead of going from here to here, I can 

say go from here to here. Then, from here you go like this. Then, from here you go like 

this. And there are two more different ways of doing it. So, I will leave that as a small 

exercise for you. So, three edge exchange if you take of three cities three edges, you can 

put them back in four different ways. 

And you can take of three edges in n minus 1 c 3 ways, so into 4. These many neighbors 

you get essentially. So, what I am trying to illustrate here is that, when you treat the TSP 

perturbative problem, you take any candidates solution. And you can generate a 

neighborhood of candidate solution surround it, using two some number of city 

exchanges or some number of edge exchanges. And they are neighborhood functions of 

different density essentially, which means that you can apply the variable neighborhood 

descent functions essentially. 

I am not writing this algorithm again. This variable neighborhood descent basically says 

that, if you have a set of neighborhood functions are raised in a order of increasing 

density. So, by density means how many neighbors thus, a given candidate have? So, if a 

candidate has let us say 5 neighbors or if a candidate has let us say 12 or 15 neighbors. 

Then, this neighborhood functions would more dense and this one essentially. And why 

did we want denser neighborhood functions because, it is likely that the best amongst 

them is the local maxima essentially. 

Or rather, it just likely that the given no reason local maxima, which means it does not 

have a better note surrounding it. So, there have the more note surrounding a note, the 

more the likelihood of a better note existing, if there are better notes in the spaces 

essentially. So, the idea of variable neighborhood descent is that, to start with the 

simplest neighborhood function. Why are you do not we want to work with the most 

dense function first? 

Because the cost of making a move is proportional to the number of neighbors, that we 

have because, we have to inspect all the neighbors and then pick the best amongst them. 

So, I like in SAT if every, if we can change any number of bits then, it amongst to doing 



the complete beautiful search. We do not want to do that, we want to starts with 

neighborhood functions move on to dense a function and so on and so far. 

So, in today's class basically what we have done is, looked at the TSP problem. And we 

are not really looked at the new method for escaping local maxima, which you will do in 

the next towards see classes. But, when we are doing that, we will keep in mind how to 

solve the TSP. So, remember that this kind of this thing. Just a quite comment about 

these two city exchange, remember this was the two city exchange, I exchange this city 

and this city. 

And as the result, I added this four new edges. Remove the four edges because, the 

neighboring edges from here and I added for. So, you can see that this is the particular 

case of four edge exchange essentially. In practice, off course if you remove those four 

edges, you can put them back in many different ways. So, two city exchange is just a 

special, one of the cases of those four city exchange. Four edge exchange, which is going 

to give us a denser functions essentially. 

So, the more the cities of the edges we remove, the more the ways you can put them back 

in and more the ways you can remove them in. And they give you denser functions 

essentially. So, that is one mechanism for doing that this. I will just stop here. We will, 

when you comeback we will look at a new algorithm, for try to escape local maxima. 

How can we escape this local maximize? That is going to be our objective in the next 

few lectures essentially. 


