

Discrete Mathematical Structures
Dr. Kamala Krithivasan

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture # 9
Proving Programs Correct

We have studied about propositional logic and predicate logic. We have also studied
about resolution principle and we have seen the use of resolution principle in prolog and
how logic is used in prolog. Today we shall see how predicate calculus or predicate logic
is made use of in verification of programs.

Now, when you write a program you do not know whether it is correct or not, you will
test which some test data. But for the given test data if the program works correctly or it
gives you the correct output you cannot say that it is always correct because some other
input may give a wrong value.

So testing only points out, if there are errors and even if it runs correctly it does not mean
that there are no errors. You could have errors and for some other input it may not work
properly. It does not tell you the absence of errors. If there are errors present it will point
out but it does not point to the absence of errors. So when you write a program it is better
to prove that it works correctly. And how you are going to do it with predicate logic is
what we are going to see today.

But again I want to tell you that we are going to explain this principle with just a simple
example. For very large programs this sort of a method may not work because it is too
much involved. For small programs you can use this method but for very large programs
testing is the only possibility. And if you test with proper data you have to assume that
the program works correctly. Now for simplicity sake I shall take flowchart programs so
it is a very old concept, I will take flowcharts. So what we are going to see is verification
of programs today and we are going to consider flowchart programs.

(Refer Slide Time: 3:30)

Now let us consider a very simple class of flowchart programs. We distinguish among
three types of variables. The program has to read something and they are the input
variables and during the execution of the program it will use some other variables they
are called program variables. And it will output something and that is called output
variable. So you have some input variables say (x1, x2, xa) an input vector which consists
of a given input values and therefore it never changes during the computation. These are
the inputs. A program vector y bar which consists of variables (y1, y2, yb) are called
program variables which is used as temporary storage during the computation.

(Refer Slide Time: 4:16)

And then you have some outputs (z1, z2, zc) and output vector z bar consisting of (z1, z2,
zc) which yields the output values when computation terminates.

Now the inputs are defined over input domains. We have to specify the input domains.
Similarly the program variables each one will have a domain on which it is defined and
then there is an output domain on which the output variables are domained. We also
distinguish among three types of nonempty domains; an input domain Dx bar, a program
domain Dy bar and output domain Dz bar. Each domain is actually a Cartesian product of
subdomains.

(Refer Slide Time: 4:48)

You have input variables (x1, x2, xa) so each one will have a domain Dx1, Dx2 like that
Dxa. The Cartesian product of that is defined as Dx bar the input domain. Similarly, the
program variables are (y1, y2, yb) each one will have a domain Dy1 for y1, Dy2 for y2 and
Dyb for yb. The Cartesian product of that is defined as Dy bar the program domain. And
(z1, z2, zc) are the output variables so each one is defined over a domain. The Cartesian
product of that is defined as Dz bar the output domain. So you have three domains; input
domain, program domain and output domain.

(Refer Slide Time: 5:40)

Now, we shall consider simple program statements. We distinguish between four types of
statements; the start statement which is start and then the y bar is assigned f(x) bar that is
the program variables are assigned some values from the input variables where f(x) bar is
a total function mapping Dx bar into Dy bar this is the technical way. So initially you start
and you have a small assignment statement where y bar is assigned some values
depending upon the x bar or the input variables.

(Refer Slide Time: 6:37)

Then you have assignment statement; it is y bar is g(x) bar y bar. That is g(x) bar y bar is
a total function mapping Dx bar into Dy bar into Dy bar.

(Refer Slide Time: 7:21)

So depending when the program control reaches this point and depending upon the values
of x bar which has never changed and the current value of y bar that is the values of the
program variable (y1, y2, yb) new values for the program variables (y1, y2, y3 up to yb)
are assigned and this is a total function. And you have test statements you have t(x bar, y
bar) where t(x bar, y bar) this is the same as this t it is a total predicate over Dx bar into
Dy bar.

, if the predicate is true you take this
xit and if the predicate is false you take this exit.

There are two outlets. Depending upon when the control reaches at this point depending
upon the value you give for x bar and y bar or the value of x bar is unchanged and when
the control reaches at this point y bar has a particular value depending upon that this
predicate is evaluated and it will take the value true or false. There are only two exits
there is no exit here. This true exit exists like this
e

(Refer Slide Time: 8:11)

Then you have the HALT statement finally after the computation is finished you arrive at
this point. Then the output variables are assigned some particular values from the input
and the program variables. It is h(x bar, y bar) where h(x bar, y bar) is a total function

apping from Dx bar into Dy bar into Dz bar and then you HALT.

efer Slide Time: 9:12)

m

(R

A flowchart program is simply any flowchart diagram constructed from these statements
which exactly one START statement such that ASSIGNMENT or TEST statement is on a
path from the START statement to some HALT statement.

You may have more than one HALT statement but usually there is only one START
statement. In other words flowchart programs are not allowed to include “dead-end”
TEST statements such as this. That is, after performing this test again you go here and
keep on performing. You are not supposed to gain into a loop like this.

(Refer Slide Time: 9:36)

So a flowchart program consists of START statements, ASSIGNMENT statements,
TEST statements and HALT statements. And every ASSIGNMENT or TEST statement
occurs in a path from a START statement to a HALT statement and you do not have
dead-end loops like this. You know what it is; you must have been very familiar with
what is a mean by a flowchart and so on. But still I am repeating all this things which you
are very familiar with.

Now how do we make use of predicate logic to prove that a program which is given in
the form of a flowchart is correct it does what you indent it to do? Now, given such a
flowchart program P and an input value si bar belonging to Dx bar. So you are taking a
particular input si bar for the input vector x bar the program can be executed after taking
the input si bar the program is executed.

Execution always begins at the START statement by initializing the value of y bar to f(si)
bar because of the first statement if you look back is y bar is assigned f(x) bar. By
initializing the value of y bar to f(si) bar it proceeds in the normal way following the arcs
from statement to statement.

(Refer Slide Time: 11:12)

Whenever an ASSIGNMENT statement is reached the value of y bar is replaced by the
value of g(x bar, y bar) for the current values of x bar and y bar this is what I mentioned
to you. Whenever a TEST statement is reached execution follows the true path or the
false path, true branch or the false branch depending on whether the current value of t(x
bar, y bar) is true or false. The value of y bar is unchanged by a TEST statement.

(Refer Slide Time: 12:12)

If the execution terminates that is if it reaches a HALT statement z bar is assigned the
current value say zeta bar zeta bar of h(x bar, y bar). When it reaches a particular point x
bar is never changed y bar will have a particular value and the control reaches that point

then h(x bar, y bar) will give you some particular value that is assigned to zeta bar. We
say that P(si) bar is defined and P(si) bar is equal to zeta bar. Otherwise this is the output
andthis is the input. We can even say like this; if the execution never terminates we say
that P(si) bar is undefined. In other words, the program P should be considered as
representing a partial function z bar equals Px bar mapping Dx bar into Dy bar.

(Refer Slide Time: 12:45)

That is given a particular input you get a particular output. So the input should belong to
the particular input domain and the output should belong to the particular domain and
they are related by this P(x) bar is equal to z bar. So if you take a particular input si bar
you get a particular output zeta bar and they are related like this. si bar belongs to x bar
the input domain and then zeta bar is the output and it belongs to the output domain Dx
bar into Dz bar this is Dz bar.

Let us take a particular example and see what happens. I will come back to this slide
later. Look at this, this is a small flowchart program and what does this do.

(Refer Slide Time: 14:55)

START and you are having two input variables x1 and x2 and two program variables y1
and y2 and two output variables z1 and z2. So here there are two input variables x1 x2,
program variables are y1 y2 and output variables are z1 and z2.

(Refer Slide Time: 15:50)

So initially when you start y1 is assigned the value 0 and y2 is assigned the value x1. And
next you go to the control statement y2 greater than OR is equal to x2 and if it is true you
take this path and y1 will be assigned y1 plus 1 and y2 will be assigned y2 minus x2 and
you go here. If this is false you take this path, in that case outputs z1 and z2 are assigned
the values of y1 and y2 and you get the HALT statement.

So the test statement is like this here; y2 greater than OR is equal to x2 and if it is true the
assignment statement y1 y2 is assigned y1 plus 1 then y2 minus x2 and then you go back
here.

(Refer Slide Time: 17:22)

If it is false z1 z2 will be assigned the value y1 y2 and then to HALT. Now let us execute
this program for a small number then we will know what it is. Take the value of x1 is 16
and x2 is 5. So what is the value of y1 and y2? The first time you reach y1 is assigned 0
and y2 is assigned the value of x1 so you get this. Then you reach test statement which is
y2 greater than OR is equal to x2. So you take the true path so you add 1 to y1 and
subtract x2 from y2 so you get this. Then again the control reaches the test statement
which is y2 greater than OR is equal to x2. So again the ASSIGNMENT statement is
reached and y1 is increased 2, you add 1 to the value of y1 and subtract x2 from y2 that is
6. Again the control reaches the test point and the same thing holds. So you add 1 to y1
and subtract x2 from y2 so now this is the value.

(Refer Slide Time: 18:48)

Now when the control reaches the test point you know that y2 greater than OR is equal to
x2 is not satisfied so you have to take the false exit. And in that case z1 will be assigned
the value 3 and z2 is assigned the value 1. Now what does this program do? It divides x1
by x2 and the quotient is given in z1 and the remainder is given in z2. So z1 gives the
quotient you are dividing x1 by x2 and z1 gives the quotient s2 and z2 gives the
remainder. This is what the program does. Now, we know that this is correct. It is a very
simple program we can easily see that this works correctly.

 0.

But how do we technically prove that it is correct and how do we make use of predicate
logic for that. The flowchart program in the figure which we have just seen performs the
integer division of x1 by x2 where x1 is greater than OR is equal to 0 and x2 is greater
than 0. You cannot divide by 0 so x2 has to be greater than

Yielding a quotient z1 and a remainder z2 that is z1 is the quotient when x1 is divided by
x2 and z2 gives the remainder when x1 is divided by x2. Here the input variables are x1
x2 and they are pairs of integers non negative integers. The y bar is again y1 y2 they are
again pairs of integers z bar is again z1 is an integer z2 is an integer. So in this case the
input domain, program domain, output domain is all pairs of integers. They are all same
in this particular example.

(Refer Slide Time: 20:20)

Now there are two aspects to proving a program works correctly. One is partial
correctness other is termination. Now, what is this? Generally when you have a program
you have what is known as an input predicate which satisfies some conditions. The input
should satisfy some conditions in the beginning. Then when the program is executed
there is an output predicate which tells you the relationship between the inputs and the
outputs. And so when you start the program selecting an input which satisfies the input
predicate finally when you reach the HALT statement output predicate should be
satisfied, this is what we want.

Now in the partial correctness portion of it you are not bothered about termination what
you say is given a input predicate if the program is executed and you reach the HALT
statement the output predicate is specified. You are not going to worry about whether it is
going to halt or not whereas in the second portion termination you have to worry about
the termination of the program. So, given an input predicate you have to show that the
program will ultimately terminate for that particular input value. So, in order to prove the
program is totally correct you have to prove both parts partial correctness and also
termination. Let us see how you do this.

Just for explanation see what an assignment statement is and how the variables are
replaced. Now, y1 y2 is 0 means y1 is replaced by 0 and y2 is replaced by x1. Similarly,
y1 y2 is replaced by y1 plus 1 y2 minus x2 means y1 is replaced by y1 plus 1 and y2 is
replaced by y2 minus x2. In general, we use the notation y1 y2 yn is replaced by g1(x bar,
y bar), g2(x bar, y bar), g3(x bar, y bar) and so on to indicate that the variables are
replaced by the corresponding values. Simultaneously all the gi’s are evaluated before
any yi is changed.

(Refer Slide Time: 23:36)

For example if y1 is 1 and y2 is 2 the assignment y1 y2 is y1 plus 1, y2 plus y2 will yield.

(Refer Slide Time: 24:27)

First one y1 is increased by one value so the new value of y1 will be 2, let me explain
with an example. Suppose you have y1 is 1, y2 is 2 and I have y1, y2 replaced by y1 plus
y2 y1 plus 1 suppose it is like this y1 will be replaced by y1 plus y2. So the new value of
y1 will be 1 plus 2 is equal to 3 and y2 is replaced by y1 plus 1 that is 2 like that, 1 plus 1
is equal to 2 like that.

(Refer Slide Time: 25:26)

The verification of a flowchart program depends on two given predicates. A total
predicate phi x bar over Dx bar is called an input predicate that describes those elements
of Dx bar that may be used as inputs. In other words, we are interested in the programs
performance only for those elements of Dx bar satisfying the predicate phi x bar. In the
special case where we are interested in the programs performance for all the elements of
Dx bar we shall let phi x bar to be just true. That is phi x bar is true for all the elements of
Dx bar.

(Refer Slide Time: 25:30)

Then you have an output predicate which relates x bar and z bar. A total predicate si x bar
z bar over Dx bar into Dz bar called the output predicate which describes the relationship
that must be satisfied between the input variables and the output variables at the
completion of the program execution.

(Refer Slide Time: 26:15)

Again as I mentioned to you what is partial correction and what is termination is what
you have to see. You say that P terminates over phi if for every input si bar such that phi
si bar is true the computation of the program terminates. P is partially correct with respect
to phi and si. If for every si such that phi si bar is true and the computation of the
program terminates si si bar P(si) bar is true.

(Refer Slide Time: 26:38)

P is totally correct with respect to phi and si if for si bar such that phi si bar is true the
computation of the program terminates and si bar P(si) bar is true.

(Refer Slide Time: 27:15)

That is the termination portion if the input predicate satisfies some condition the program
terminates. The partial correctness if the input predicate is satisfied and the program
terminates you are not bothered about that you assume that it terminates then the output
predicate will be satisfied. Now it is totally correct if both these conditions are satisfied
given a value si bar which satisfies the input predicate the program will terminate and

output predicate will be satisfied. So in this particular example let us see what are the
input predicates and output predicates.

Actually in this case x2 cannot be 0 because you cannot divide by x2. So the input
predicate will be x1 greater than OR is equal to 0 AND x2 greater than 0 this has to be the
input predicate. And the output predicate should relate the output variable and the input
variables. So what is that? X1 is the number you are going to divide and you are going to
divide by x2 and the quotient is z1 so z1 x2 the remainder is z2. So this relation should be
satisfied by the outputs. Not only that the remainder should be less than the divisor. So z2
should be less than x2 of course it cannot be negative it has to be greater than OR is equal
to 0. So these two conditions should be satisfied when the program terminates.

(Refer Slide Time: 29:21)

Now, first we are considering partial correctness, when you consider partial correctness
even if you take x2 greater than OR is equal to 0 it is okay. Only for proving termination
you require it should be greater than 0.

(Refer Slide Time: 29:41)

So let us first prove partial correctness then we shall prove termination and then because
you prove both the parts we will be proving total correctness. So first we shall consider
partial correctness. Here we take the input predicate phi x1 x2 to be x1 greater than OR is
equal to 0 AND x2 greater than OR is equal to 0. Actually for total program x2 has to be
greater than but for proving partial correctness even if you take as x2 greater than OR is
equal to 0 it is okay.

(Refer Slide Time: 30:47)

Now, look at the way the program works. You have to divide the program into paths.

(Refer Slide Time: 30:58)

Now the portion 1 to 2 is taken as one path, 1 to 2 is taken as a path alpha. And the
portion 2, 4, 5, 2 again is taken as another path and the portion 2, 3, 6 is taken as another
path gamma. So the loop is taken as 2, 3, 4, 5, 2 is taken as a path beta. And 2, 3, 6 is
taken as a path gamma.

(Refer Slide Time: 31:40)

Now at the point of the loop that is at the point B you must attach a predicate which is
called an inductive assertion. And that should bring out the relationship between the input
variables and the program variables when the control reaches at that point. So now at B
you define an inductive assertion P(x1, x2, y1, y2). And what is that? It should bring out

the relationship between the program variables and the input variables. What is y2?
Initially it is x1 and you keep on decrementing it. So y2 is equal to y1 times x2 plus y2,
x1 is equal to y1 times x2 plus y2. And that is you have subtracted x2 from x1 finite
number of times and the remainder portion is y2 and y2 should be greater than OR is
equal to 0. This is the condition which should be satisfied by the program variables and
the input variables when the control reaches the point P this is the inductive assertion.

 (Refer Slide Time: 33:36)

Now taking this we have to form verification conditions for each path and we have to
prove that it is correct. Now, look at the path alpha you initial before you have that y1, y2

is replaced by 0, x1. What is the input predicate? Input predicate is x1 greater than OR is
equal to 0, AND x2 greater than OR is equal to 0. If this is true before this statement is
executed what should be true at this point that is what you have to write.

At this point y1 takes the value 0 and y2 takes the value x1 and the inductive assertion at
this point is P(x1, x2, y1, y2). And replacing y1 by 0 and y2 by x1 what is that? So this
should imply P(x1, x2, y1, y2) but (y1, y2) at that point is 0 and x1 because of this. So this
is the first verification condition.

And if you replace it what is this? This is, if I expand this then what does that become? It
is x1 is equal to y1 is 0 so it is y2 is x1 so it becomes x1 is equal to x1 AND what is y2? y2
is x1 greater than OR is equal to 0. So this is the first verification condition x1 greater
than OR is equal to 0 AND x2 greater than OR is equal to 0 should imply x1 is equal to
x1 AND x1 greater than OR is equal to 0 which is true. So this is the first verification
condition and that is proved. Now at the point consider the path beta initially when you
start what is the value of P(x1, y1, y2)? The inductive assertion is x1 is equal to y1 x2 plus
y2 AND y2 is greater than OR is equal to 0.

Now if you execute the path y2 greater than OR is equal to x2 evaluates to true so you
also have the condition AND y2 greater than OR is equal to x2. So this should imply the
value after the assignment is made. The second time the control reaches B what will be
the inductive assertion? The values of y1 y2 will be changed by the new values y1 plus 1
AND y2 minus x2. So the new value should be x1 is equal to, now y1 is changed to y1
plus 1 AND x2 plus y2 minus x2 which is the new value of y2 AND what is the new
value of y2? y2 minus x2 greater than OR is equal to 0. Let us check whether it is true or
ot.

on reduces to x1 is
qual to y1 x2 plus y2 AND y2 minus x2 greater than OR is equal to 0.

efer Slide Time: 38:05)

n

Now if you simplify this what will you get? You will again get this because this x2 will
cancel with this x2 and so you will again get y1 x2 plus y2. So this porti
e

(R

Now you can see that this is the same as this and because y2 is greater than OR is equal to
0 AND y2 is greater than OR is equal to x2 obviously y2 minus x2 will be greater than
OR is equal to 0 because y2 is greater than OR is equal to x2 you know that y2 minus x2
is greater than OR is equal to 0. So this implies this, so the second verification condition
for the path beta taking you from B to B along 2, 3, 4, 5 and again back to 2 is also
verified and found to be true. Now, consider the path gamma which is from B to C. And
here when you start at the point what is the condition that is satisfied? x1 is equal to y1 x2
plus y2 AND y2 greater than OR is equal to 0 this is the condition which is satisfied. And
when you reach the point C what is the relationship? The relationship between z1 and z2
should be satisfied the si value should be satisfied. This x1 is equal to z1 x2 plus z2 AND
z2 is greater than OR is equal to 0 and less than y2. This is the condition that should be

tisfied. sa

Now, before coming to the part you make the assignment z1 as y2 the new values are you
are giving to z1 AND z2. So instead of z1 AND z2 I can write y1 and y2. So the third

verification condition is x1 is equal to y1 x2 plus y2 AND y2 greater than OR is equal to 0
and you are taking the false path that is y2 less than x2. This is the condition which
should be satisfied. And all these together should imply the si but now you know that the
last step you replace z1 by y1 AND z2 by y2. So instead of z1 and z2 the latest values of
y1 AND y2 I can use. So this should satisfy x1 is equal to y1 x2 plus y2 AND 0 less than
OR is equal to y2 less than x2 the divisor. Now you can very easily see that this is the

me as this and this one you can split, actually the combination of these two gives you

(Refer Slide Time: 41:50)

sa
this.

So this is the verification condition for the path gamma and that is also found to be true.
So you know that the program is partially correct that is whenever it terminates the output
predicate and whenever it starts with the variables satisfying the input predicate finally
when it goes to the halt statement the output predicate is satisfied. It performs the integer
division which you want. We have seen what input predicate is and the output predicate
nd so on. So with respect to this, this is the partial correctness, this is the input predicate,

or a given program flowchart P an input predicate pi x bar and an output predicate si x
ar z bar apply the following steps:

a
this is the output predicate.

Now the inductive assertions method, how do you go about proving the partial
correctness?
F
b

(Refer Slide Time: 42:23)

You have to cut the loop you have to cut it from B to B again. Find an appropriate set of
inductive assertions in this case at the point B we attach one inductive assertion. In
general, the program is more complicated, you may have to attach at every cut point one
inductive assertion and so several inductive assertions you may have to write. Those
inductive assertions should bring out the relationship between the program variables and
the input variables when the control reaches at that point. So construct the verification
onditions, so here we have construct the verification conditions for the path alpha for the

u(x bar, y
ar) at the point B. And in this case the function is just y2 here. And y2 should take

e. And every sequence has a least
oint. In fact here if you take N and less than if you take any sub set of N that will have a
ast element. Such a set is called as well founded set.

c
path beta and for the path gamma.

If all the verification conditions are true then P is partially correct with respect to phi and
si. This is for termination. Now, the second portion we have to consider. Let us take the
same flowchart and consider termination. For proving termination in this particular
example you have to start with the phi dash which is x1 greater than OR is equal to 0
AND x2 greater than 0 because you know that when x2 is equal to 0 the program will not
terminate you cannot divide by 0. With respect to this you have to show that ultimately
the program will terminate. What you do here is you attach a partial function
b
values from a well founded set, we have not yet studied what is a reflexive and so on.

A well founded set it is a set with an order relation for example here it is less than and
here it is the set of non negative integers with the less than relation. And it satisfies three
conditions it is irreflexive, antisymmetric and transitiv
p
le

(Refer Slide Time: 45:51)

Now y2 should take values from a well founded set and you should show that the control
reaches the point B and the loop is executed and you go to the point B again. Now the
point is when you go from B to B the value of this is reduced. So the first time you go
here and second time you go here the value should decrease and because you cannot have
 infinite decreasing sequence there is a least element so at some point you will get out of

ntrol reached
 it was 16 next time 11 next time 6 and so on. This keeps on decreasing and it has to
ke positive values only and so at some point you will get out of the loop.

a
the loop.

The main point to prove here is that if a loop is executed ultimately you will get out of
the loop. So in this case what you have to prove is at this point you must have a partial
function like this in this case it is y2. Now let us take the values of y2 by taking the
example; x1 is equal to 16 and x2 is equal to 5 now y2 was initially 16 next it became 11
then it became 6 then it became 1. It kept on decreasing, the first time the co
B
ta

(Refer Slide Time: 47:09)

This is what meant by termination so you prove that the program terminates. Not only
that usually termination for proving termination you attach “good” assertion at that point
like verification condition here also you have “good” assertions. And in this case it can be
say y1 greater than OR is equal to 0 AND y2 greater than OR is equal to 0 you can say.
So these are “good” inductive assertions which should be satisfied at the point where you
ut the loops. They need not bring out all the relationship between the input and the

ould satisfy some conditions.

(Refer Slide Time: 48:00)

c
output variables but they sh

So you can have something slightly less effective like you know you can just have y1

greater than OR is equal to 0, y2 greater than OR is equal to 0 something like that at that
point. But the point is you must attach a function u x bar y bar which takes continuously
lesser and lesser values from a well founded set and so ultimately you will exit the loop.
That is what we want the program will terminate and that is what we want to prove. Well

unded sets method: This is the method for proving termination.

efer Slide Time: 49:00)

fo

(R

For a given flowchart program P and an input predicate phi si bar apply the following

good” partial functions, the function
hich we defined here is a “good” partial function.

rtial functions. If all the termination conditions are true then the P terminates
ver phi.

h and y bar dash. This is the
itial value and this is the value after execution of the loop.

steps:
Cut the loops, here again we have to cut the loops and find “good” inductive assertions.
So here we say “good” inductive assertion. There must be some assertions but these
assertions need not bring out all the relationship between the input and the output
variables. And now choose a well founded set and “
w

What is a “good” partial function? When you start from a point and after executing the
loop you reach a same point it should keep on decreasing. Choose well founded set and
“good” pa
o

What are the termination conditions here? The termination condition is here, is the first
time you have u(x bar, y bar) and after execution of the loop the new values if I say this
should be greater than OR is equal to the new value x bar das
in

(Refer Slide Time: 50:49)

So it should keep on decreasing like that. So, if you want to prove total correctness of a
program you must prove both partial correctness and termination. Thus, only when you
prove both the program is totally correct with respect to the input predicate you have
specified. Here in this example when you want to prove total correctness you must not
take this you must take this because the earlier one it will not terminate. So with this
input predicate the program is partially correct it also terminates so it will be totally
orrect.

uotient and the
mainder AND the remainder is less than x2 but it is a positive quantity.

c

And what is the output predicate? The output predicate brings out the relation between
the input and output values. In this case it is x1 is equal to z1 x2 plus the q
re

(Refer Slide Time: 52:05)

So this is the one. But you see there is no automatic way of writing the inductive
assertions. You have to think what the program does at that point, what are the conditions
satisfied by the input and the program variables at that point and write. So, for a small
program you can do that and you can write all the verification conditions and termination
onditions etc.

orrect way of going about any
rogram is you have to prove that the program is correct.

ience and this tells us how it forms the basis in writing programs and
proving programs.

c

For, if the program is very big you know that this is going to take a lot of time and so you
resort to testing rather than proving programs correct. And testing how do you do? You
give proper input values thinking that these are the possible values and then run the
program and if it gives the proper output values you assume that what you have done is
correct, the program you have written is correct. But the c
p

But for practical purposes when the program is very large this may not be possible. But
still this way when we have proved it tells you the use of logic, the use of propositional
logic, the use of predicate logic in proving that the program is correct. So logic is the
basis of computer sc

