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In the last lecture we saw about finite state automaton, how a finite state automaton can 

be used to represent FORTRAN identifiers or Pascal identifiers, integers, decimals and 

things like that. And we also saw that finite state automaton is an abstract model of a 

synchronous sequential machine. In the abstract model we can also think about a non-

deterministic finite state automaton. In all the examples we considered in the last lecture 

you may remember that, given a state and an input symbol the next state was uniquely 

determined. That need not be the case, suppose given a state and the input symbol there is 

some choice of moving into the next state then what happens, that is called as a non-

deterministic finite state automaton. 

 

Let us take an example, consider this example:  

The transitions are marked like this: q0 is the initial state and q2 is the final state, what is 

the set of strings accepted by this machine? First of all see that if you are in state q0 and 

you get the input a then you have a choice of either you can go to q0 or you can go to q1, 

there are two choices. Similarly, when you are in q1 and you get the input b you have two 

choices either you can go to q1 itself or you can go to q2. Now, from the diagram you can 

see a string of the form a number of a’s followed by a number of b’s will be accepted by 

this machine. We also had a deterministic automaton for that, if you remember  
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This is the deterministic automaton we had for this q0 q1 q2 with a dead state a a b and 

then b. This was a deterministic automaton which accepted the same language L is equal 

to a power n b power m a string of a’s followed by string of b’s where n m are greater 

than or equal to 1, there should be at least one a and one b.  
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Now look at this diagram, let us see how a string of a’s and b’s will be accepted. Take 

this string a a a b b, start from q0 that is the initial state. After reading a you have two 

choices either you can go to q0 or you can go to q1. You can mark it like this. Now, if you 

go to q0 again after reading a there are two possible choices either you can go to q0 or to 

q1. But if you are in q1 you cannot read a, because there is no transition mapping there for 

that so you cannot proceed here. Now again if you are in q0 and you get a the next 

instance you can go to q0 again or q1 but from this direction you cannot proceed further.   

 

Continuing like this in q0 if you get b you cannot proceed further because there is no 

transition marked there. But in q1 if you get b you have two choices either you can go to 

q1or you can go to q2. Again in q1 when you get b you have two choices you can go to q1 

or you go to q2 but in q2 you cannot read any symbol because no transition is there from 

q2. 

 

So, looking at this way from q0 after reading a, it is possible that you can be in q0 or q1. 

After reading a a you can be in q0 or q1, after reading three a’s again you can be in q0 or 

q1, after reading a a a b you can be in q1 or q2, after reading a a a b b you can be in q1 or 

q2. But one of the state q is a final state, q2 is a final state so this string will be accepted 

by the machine. So, after reading the whole string there are a number of possibilities for 

the machine to be in and if one of them is a final state the string will be accepted. So the 

sequence of states which leads you to acceptance is here. This is the sequence of states 

which leads you to the acceptance: q0 q0 q0 q1 q1 q1. 

 



The other sequences may stop in the middle or it may go to a non final state and that does 

not matter. The string is accepted if there is one sequence of states which leads you to 

acceptance that is the definition of a non-deterministic automaton. So when you connect 

it with sequential circuits you generally think about only deterministic automaton. But 

when we consider it as an abstract model we can think both of deterministic machine and 

non-deterministic machine.  
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Now, in this particular example you see that the same language a power n b power m n m 

greater than or equal to 1 can be accepted by a deterministic machine also. Is it true that 

in general this will happen?  

We find that in general also any language accepted by a non-deterministic automaton can 

be accepted by a deterministic automaton and we shall prove that. But before going in to 

that let us go to the formal definition of a non-deterministic finite automaton. 

 

A non-deterministic finite state automaton is a five tuple m is equal to k sigma delta q0f 

where again k is the finite set of states, sigma is a finite set of input symbols, q0 in k is the 

initial state, f contained in k is the set of final states, delta is a mapping from k into sigma 

into finite subsets of k and this is where the difference comes. In the deterministic model 

it is from k into sigma into k but now it is from k into sigma into finite subsets of k and 

you denote it like this k into sigma into 2 power k this denotes all the subsets of k so this 

is called the transition function.  
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Now, proceeding further to determine the language accepted extend delta to k into sigma 

star call it as delta cap so delta cap epsilon delta cap q of epsilon is q for all q in K. And 

we also extend those two subsets of K. So, if q is a subset of K delta of (Q, a) is union of 

delta of (Q, a) where q belongs to Q. So you are extending the mapping to subsets of k, 

we need not use a different symbol because delta of (Q, a) is the same now how do you 

define delta cap of q, xa a string that is equal to a set of states p of the form p is in delta 

of (Q, a) where what is Q? Q is equal to delta cap of q(x). In essence it means like this; 

starting from a state q after reading x you can be in a finite number of states after reading 

the symbol a again from each one of them you can be in a finite subset that is denoted by 

this.  
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So actually delta cap (Q, a) is the same as delta of (Q, a). Since this holds you need not 

have to distinguish between delta and delta cap and the language accepted is denoted by 

L(M) or T(M) and that is equal to the set of strings x where x belongs to sigma star delta 

of (q0, x) contains a state from F. Actually you know that in the case of deterministic 

automaton this is a single state but in the case of non-deterministic automaton it is a 

collection of states delta of (q0, x) will be a collection of states. If it contains one state 

from F then you say that the string is accepted. So this is a formal definition of 

acceptance.  
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Now, let us see how we can go from non-deterministic automaton to deterministic 

automaton. So, any set accepted by a NFSA is Non-deterministic Finite State Automaton 

can be accepted by a deterministic finite state automaton. Now, before going into the 

regular proof we can consider this example, how we can get this from this? Take this 

example then we shall go to the formal definition. Let us consider the method which is 

used here called as subset construction.  

 

Now the non-deterministic automaton state can be represented by a table like this: a b q0 

after reading a you have two possibilities that you denote as q0 q1 you cannot read b from 

q0, then from q1 if you read b you go to q1 or q2 you cannot read a, from q2 you cannot 

read anything. So the state table for a non-deterministic automaton will be like this. For 

this example it is like this. You see that from q0 if you read a, you can go to q0 and q1 that 

is written as a set like this because the mapping is from K into sigma into finite subsets of 

K.  

 

Now let us try to draw another state table. What is the initial state here?  

This is the initial state and this is the final state. So start with the initial state as a set like 

this. We are using square brackets to denote that it is a single state. Now from q0 if you 

read a, you have the possibilities of q0 and q1. Actually you try to construct a 

deterministic automaton where corresponding to each subset you will have a state here. 

So each subset of the non-deterministic machine will be a single state here. So from q0 if 

you get a, you can go to q0 q1 that is written like this and if you go to phi then from q0 q1 

consider this. From q0 if you read a, you can go to q0 or q1, from q1 you cannot read a. So 

by making use of that union operation from q0 or q1 if you get a, you can go to the union 

of these two that is only q0 q1. Similarly, from q0 q1 if you get b from q0 if you get b you 

cannot do anything but from q1 if you get b you can go to q1 or q2. So from q0 or q if you 

get b you can go to the union of these two that is q1 and q2. 

 

Now we have considered this, we have not considered phi phi in the end we will consider 

that, this again has already been considered, now consider q1 q2 then you will have phi, 

phi and phi. Now from q1 and q2 if you get a, you have to take the union of this which is 

just phi, from q1 and q2 if you get b you have to take the union of these two that is q1, q2. 

This you have already considered so the whole table is over now. Here remember that 

each one is a single state. 

 



 
 

Now look at this diagram, I will re-label that states like this: q0 q0 q1 q1 q2, this denotes 

the same table, this one is phi, I can even put phi within square brackets it is only a sort of 

a symbol it does not matter. Look at this transition [q0] a is [q0 q1]; [q0] b is phi, [q0 q1] a 

is [q0 q1] [q0 q1] b is [q1 q2] from this table, [q1 q2] a is phi, [q1 q2] b is this. Now how do 

you designate the final state and the initial state?  

The set containing q0 alone is taken as the initial state and in this table q2 is a final state 

so any subset containing q2 will be a final state. So this subset contains q2 so that is a final 

state so this will become a final state. So you see that you have the same diagram but I 

have only relabeled the states and you are getting the deterministic automaton for this 

automaton. This is to illustrate with an example.  

 

Now the proof also is like this:  

Let M is equal to (K sigma delta q0, F) be a NFSA an equivalent DFSA M dash is equal 

to (K dash sigma delta dash q0 dash F dash) sigma is the same because you are 

considering over the same alphabet and is constructed as follows. K dash is 2 power k 

that is all subsets of K will be K dash, q0 dash will be the set containing [q0] alone that is 

each subset of K will be a state in K dash and the subset containing q0 alone will be the 

initial state and F dash is equal to subsets of K containing a state from F. All subsets 

which contain a state from F form F dash.  

 

Now you have to define delta dash, delta dash is defined like this:  

Delta dash some q1 is a subset qka this will be delta of q1, qka. That is, you take delta of 

[q1, a] [q2, a] [q3, a] etc find the union that is given like this. This is the way we have 

constructed like this.  
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Now, looking at this table also you see that from q0 after reading a you go to this state in 

the deterministic one, you go to this state in the deterministic one, you go to this one, this 

one and this one. So if this subset contains a state from F the string will be accepted.  
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This is the construction for non-deterministic automaton and the proof is like this. I shall 

not go into the details of the proof because it may take quite some time. The main idea is 

how you go about the subset construction. You can see that use induction and the 

equivalence can be proved, use induction on the length of the string. Instead of going to 

this induction portion of the proof formally we shall consider one more example. 



Consider the set of strings over sigma is equal to 0, 1 which end with either 0, 0 or 1, 1. 

Now the non-deterministic diagram for that will be like this, it will be q0 then q1 q2 q3 this 

is q2 q3 q4. You can very easily draw the non-deterministic diagram like this. First you 

can read any string of a’s 0s and 1s. And once you get two 0s the string will be accepted. 

It should end with 0, 0 or with 1, 1. You can see that this is a non-deterministic state 

diagram it is a non-deterministic finite state automaton because from q0 if you get 0 you 

have the possibility of going to q0 or q1, from q0 if you get 1 you can have the possibility 

of going to q0 or q3, this is the non-deterministic diagram.  
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Let us construct the deterministic diagram draw the state table {0, 1}. So you have to 

start with q0 q0 0 is q0 q1 and q0 1 will be q0 q3. Next you have to consider with this q0 q1 

q0 q3. From q0 or q1 you get 0 so you go to q0 q1 or q2, from q0 or q1 if you get 1 you go to 

q0 or q3 and here again you get this, from q0 or q3 if you get 0 you again get q0 or q1. If 

you get 1 you can go to q0 q3 or q4. Now for this you have already considered, you have 

to consider for this so next you have to consider for the state q0 q1q2 and also for the state 

q0 q3 q4. Now, from q0 q1 or q2 if you get 0 you again go to q0 q1 or q2 this from the 

diagram you get f. 

 

From q0 q1 or q2 if you get 1 you get to q0 or q3 only so you get q0 q3, from q0 q3 or q4 if 

you get a 0 you get to q0 or q1only so q0 q1, from q0 q3 or q4 if you get 1 you get q0 q3 q4. 

Now this is the initial state the singleton containing q0 is the initial state. What are the 

final states here? Here q2 and q4 are final states so any subset containing them will be a 

final state so this is a final state and this is a final state.  
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So, if you draw the state diagram for this it will be like this; q0 then q0, q1 q0, q3 q0, q1, q2 

then q0, q3, q4 each one of them is a state this is the initial state and these are final states, 

mark the transitions [q0, 0] is this and q0, q1, 0 is this. [q0, 1] is this, from here q0 q1 if you 

get 1 you go here, from here if you get 0 you go here if you get 1 you go here, from q0 q1 

q2 if you get 0 you remain in the same state, if you get 1 you go to q0 q3, from q0 q3 q4 if 

you get 1 you remain in the same state if you get 0 you go here.  

 

Now here again you can very easily see that if you get two 0s you reach the final state, if 

you get two 1s you reach the final state. If you get some sequence and at the end if you 

get two 1s from here if you get two 1s 1 1 you will get, from here if you get two 1s 1 1 

you will reach the final state. Similarly, if you get any sequence of 0s and 1s and if you 

are in this state when you get 0 0 you go here and accept if you are here you will get a 0 0 

and you accept. If you are here and then afterwards you get a 1 1 1 you will accept 1 0 

you will go here then either you must get two 0s or two 1s. So you can very easily see 

that from this diagram any string which ends with two 0s or two 1s will be accepted. And 

also you can very easily see that this is a deterministic diagram so from the non-

deterministic automaton like this by use of subset construction we have got a 

deterministic automaton. So we have seen how to construct a deterministic automaton 

from a non-deterministic automaton.  

 

We can also have lambda transitions where from one state by reading an epsilon or 

lambda you go can go to another state. And even with this facility the power of the finite 

state automaton will not be increased it will just accept only regular sets. The set accepted 

by a non-deterministic automaton or deterministic automaton is called a regular set.  
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In these cases we have seen this as a acceptor, next we shall talk about a minimization 

procedure. Look at this diagram, the alphabet is a, b you have three states these two are 

final states q0 q1 q2 the state diagram is given like this b a b b a a what is the language 

accepted by this machine. If you look at the diagram carefully, you see that if you get 

only a string of b’s it will not be accepted. But once you get one a, you go here 

afterwards you will be either in q1 or q2 only so it can be followed by any string. So any 

string of a’s and b’s where there at least one a it will be accepted by this machine. If you 

do not have any a, the string of b’s it will not be accepted. So the language consists of set 

of strings in which at least one a is present.  

 

Now look at this diagram, I will call the states just s0 s1 instead of q0 and all, b a a b what 

is the language accepted by this machine? It is the same, any string of b’s will not be 

accepted but if you get at least one a you go here and you can read any other string 

afterwards. So these two automata are equivalent they accept the same set of strings, they 

are equivalent. This is a minimal state automaton but this is not the minimum state 

automaton because you can reduce the number of states.  
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How do we go about reducing the number of states?  

But before that we need some definitions of equivalent states and so on. Two states p and 

q you are considering a DFSA. Consider a DFSA two states p and q are equivalent if and 

only if for any string x in sigma star that is you are considering a DFSA for which the 

input alphabet is sigma. Two states p and q are equivalent if and only if for any string x in 

sigma star delta of p(x) and delta of q(x) are both in F or both not in F. If you take the 

state p and the state q after reading the string x you reach a state, after reading x from 

here you reach a state both of them should be final states or non final states whatever may 

be x. Hence, for a particular x both of them may be final for another x both of them may 

be non final. So in that case you say that the two states p q are equivalent.  
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p and q are distinguishable if there exists a string x such that delta of p(x) belongs to F 

and delta of q(x) does not belong to F or the other way round. So two states p and q are 

distinguishable if there exists a string x such that delta of p(x) belongs to F and delta of 

q(x) does not belong to F, the other way round means delta of q(x) belongs to F and delta 

of p(x) does not belong to F. that is from p and q this x takes you to a state and from q it 

takes to you to a first state, one of them will be a final state and one of them is not a final 

state then p and q are distinguishable.  

 

Then you see that in that case x is called the distinguishing string or sequence. This idea 

of equivalence states the distinguishing sequences; this plays a very important role in 

computer networks. Though I cannot describe everything without proper background you 

must remember that this sort of an idea of a finite state automaton where you talk about 

equivalent strings and distinguishing states and about the distinguishing sequences plays 

a very very important role in computer networks. 

 

Therefore, if p and q are two states and their successors are r and s respectively. That is r 

is equal to delta of p of a and s is equal to delta of q of a. If p and q are equivalent then 

what can you say about r and s? Any string if it takes p to a final state it should also take 

q to a final state, need not be the same final state it can be different. And if it takes to a 

non final state this also should be taken to a non final state, so that is true for any string x. 

If you consider a string of the form x is equal to ay then the string y will take r to a final 

state if and only if it will take s to a final state. And if it takes r to a non final state s also 

will go to a non final state after reading y. So, if p and q are equivalent r and s are 

equivalent. And if r and s are distinguishable what does that mean? There is a string x 

which takes one to a final state and another to a non final state. So the string ax takes p to 

a final state and takes q to a non final state. So if x is a distinguishing string for r and s ax 

will be a distinguishing string for p and q. So if r and s are distinguishable p and q will be 

distinguishable.  
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So making use of this you can try to find the minimum state automaton for a final state 

automaton. For example for this one the minimum state automaton is this. How do we get 

this?  

You can see that the states q1 and q2 are equivalent because from here if you read any 

string at the end you will only go to q1 or q2 which is a final state. From q2 if you start 

reading a string you will again go to q1 or q2 only you cannot go back to q0 so that will be 

a final state. So any string if you take starting from q1 it will be accepted starting from q2 

also it will be accepted in this particular example. Whereas take q0 and q1 if you take b 

starting from q0 you go to q0 starting from q1 you go to q1 is a final state and another is a 

non final state. So these two are distinguishable and the distinguishing string is b, b alone 

will take you to a non final state here, it will take you to a final state here.  

 

Similarly, if you consider q0 and q2 they are distinguishable because if you take b it takes 

you to a non final state, here b will take you to a final state. So q0 and q1 are 

distinguishable, q0 and q2 are distinguishable, but q1 and q2 are equivalent. So we can 

merge the equivalent states and when you merge these two q0 is here as s0 but q1 and q2 

are merged as s1. So starting from q0 when you get a you go here when you get b you go 

here. This way you can find the minimal state automaton you have to merge the 

equivalent states.  
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Let us consider one more example and consider the minimal state automaton. Take this 

example, you are having six states q0 q1 q3 q4 q5 q6 and what are the sets of strings 

accepted?  

If a string contains just 1 1 any 0s followed by 1 it may be followed by more 0s also it 

will be accepted. But if a string does not contain 1 it will not be accepted. If it contains 

two or more 1s also you go to q6 and it will not be accepted. So the set of strings accepted 

will be a sequence of 0s with 1 1 followed by a sequence of 0s. Just 1 alone can also be 

accepted. Now this is not the minimum state automaton how will you find the minimum 

state automaton?   

To find the minimum state automaton you have to take all states try to partition them 

further and further until we are able to get no more partitions.  

 

For example; take all of them in one partition q0 q1 q3 q4 q5 q6 take all of them. Now, if 

you take epsilon as the distinguishing sequence starting from here if you take epsilon you 

will go to a non final state, starting from here if you take epsilon you go to a final state. 

So first partition into final and non final states q0 q1 q6 this is one partition and q3 q4 q5 

and to partition this you have made use of the empty string as a distinguishing sequence. 

So non final states form one block and final states form one block. The possibility is 

these may be equivalent and these three may be equivalent, you have to test further 

whether they are equivalent. 

 

Now consider q0 q1 q6 what are the 0 successors for q0 q1 and q6? The 0 successors of q0 

q1 and q6 are q0 q1 and q6 that does not make any difference. What are the 1 successors q0 

q1 q6? The 1 successor of q0 and q1 is q3 and q4 but the 1 successor of q6 is q6. So, 1 takes 

these two to the final states whereas one takes this to a non final state. So you can split it 

like this q0 q1 and q6 and 1 is the distinguishing sequence. 

 



Now look at q3 q4 q5 what are the 0 successor? The 0 successors of q3 q4 q5 are q5 only. 

The 1 successors of q3 q4 q5 are q6. So further split here is not possible, the 0 successors 

of all the three is a single state, the 1 successors are also a single state so you cannot split 

it further. Now we have to test whether you can split this one q0 q1. Look at q0 q1 what are 

the 0 successors? The 0 successors are q0 q1 they are in the same block.  

 

What are the 1 successors of q0 q1?  

They are q3 and q4 and again they are in the same block. So, further split is not possible 

here. So the minimum state automaton will have this. You can merge q0 q1 and you can 

merge q3 q4 q5 then q5 alone will be separate. So this is the final state q3 q4 q5 this is the 

final state this is the initial state. If you read 1 1 you go here if you read two 1s you go 

here when you read 0 you are here, when you read a 0 you are here when you read a 0 or 

a 1 you remain here. So you can see that any string having a number of 0s with 1 1 

followed by 0s will be accepted. If you have no 1s or if you have two 1s or more 1s it will 

go to q6 which is a non final state and such a string will not be accepted. So this is the 

minimum state automaton for this deterministic automaton. 
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So we have considered a non-deterministic FSA. We have also seen that non-

deterministic FSA are equivalent to DFSA and they accept only what are known as 

regular sets. And we have also seen how to construct the minimum state automaton this 

also we have seen. And we have also seen what equivalent states are, what is a 

distinguishing sequence and things like that.  

 

In the last lecture we have considered FSA with output. For example, you can consider 

this one with an input alphabet sigma is equal to 0 1 and output alphabet delta is equal to 

yes or no. The string will be accepted means you say yes and if it is not accepted you say 

no and any string ending with two 0s will be accepted and any string ending with two 1s 

will be accepted otherwise it will not be accepted. You can have an automaton like this, 



look at this automaton and consider the sings strings 0 0 1 0 1 0 1 1 and the output will be 

0 no 0 0 yes then again 1 no no no no no yes the output sequence will be like this. 

Whenever you have two 0s it will output a yes when you have two 1s it outputs a yes.  

 

Now you are able to achieve this with just three states having an output mentioned any 

string ending with two 0s or two 1s you can have an output sequence which outputs a yes 

when the string ends with a two 0 or two ones otherwise it outputs a no.  

 

We have also considered the same thing as an accepting device and we had a diagram 

earlier which had five states. Actually we constructed a non-deterministic automaton and 

from the non-deterministic automaton we constructed the deterministic automaton which 

also had five states. If we use the minimization procedure by finding equivalent states 

and all that you will realize that you cannot reduce the number of states you will require 

five states for that if you want to look at it as an acceptance device whereas making use 

of outputs we are able to reduce the number of states to three.  

 

Here again there are two types of machines called Moore machines and Mailey machines 

this is called a Mailey machine.  
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We have seen about the final state automaton which has got lot of applications in the 

lexical part of the compiler and also in text editing. There are other things like weighted 

finite state automata, distributed finite state automata and integer weighted finite state 

automata.  

 

These concepts are very useful in image compression and image representation. There are 

so many results about finite state automaton. What we have seen is only a brief, glimpse 

of what is a finite state automaton, how non-deterministic automaton and deterministic 

automaton are equivalent. The language accepted is a regular set and it can also be 



represented by what is known as a regular machine. So this is just a brief introduction 

about finite state automaton.  

 

  

 


